Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = super-large cooling tower

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 32383 KB  
Article
Experimental Study on the Mechanical Performance of Cast-in-Place Base Joints for X-Shaped Columns in Cooling Towers
by Xinyu Jin, Zhao Chen, Huanrong Li, Jie Kong, Gangling Hou, Xingyu Miao and Lele Sun
Buildings 2026, 16(1), 174; https://doi.org/10.3390/buildings16010174 - 30 Dec 2025
Viewed by 223
Abstract
The supporting system of super-large cooling towers is crucial for the structural safety of nuclear power plants. The X-shaped reinforced concrete column has emerged as a promising solution due to its superior stability. However, the performance of the cast-in-place base joint, which is [...] Read more.
The supporting system of super-large cooling towers is crucial for the structural safety of nuclear power plants. The X-shaped reinforced concrete column has emerged as a promising solution due to its superior stability. However, the performance of the cast-in-place base joint, which is a key force-transfer component, requires thorough investigation. This study experimentally investigates the mechanical performance of the joints under ultimate vertical compressive and tensile loads. The loads represent gravity-dominated and extreme wind uplift scenarios, respectively. A comprehensive testing program monitored load–displacement responses, strain distributions, crack propagation, and failure modes. The compression specimen failed in a ductile flexural compression manner with plastic hinge formation above the column base. In contrast, the tension specimen exhibited a tension-controlled failure pattern. Crucially, the joint remained stable after column yielding in both loading scenarios. The result validates the “strong connection–weak member” design principle. The findings confirm that the proposed cast-in-place joint possesses excellent load-bearing capacity and ductility. Therefore, the study provides a reliable design basis for the supporting structures of super-large cooling towers. Full article
Show Figures

Figure 1

23 pages, 13063 KB  
Article
Typhoon-Induced Failure Process and Collapse Mechanism of Super-Large Cooling Tower Based on WRF-CFD-LS/DYNA Nesting Technology
by Hongxin Wu, Shitang Ke, Feitian Wang and Weihua Wang
Appl. Sci. 2022, 12(9), 4178; https://doi.org/10.3390/app12094178 - 21 Apr 2022
Cited by 8 | Viewed by 3135
Abstract
There have been several cases of large cooling towers being damaged by wind in history. A typhoon has the characteristics of a strong wind field energy and large shear wind speed. This paper simulates the entire collapse process of large hyperbolic cooling towers [...] Read more.
There have been several cases of large cooling towers being damaged by wind in history. A typhoon has the characteristics of a strong wind field energy and large shear wind speed. This paper simulates the entire collapse process of large hyperbolic cooling towers by the action of typhoons and refines the typhoon-induced failure mechanism for cooling towers. Firstly, based on WRF-CFD wind field downscaling technology, a fine simulation of the near-ground multiscale wind field produced by China’s strongest typhoon “Typhoon Rammasun” is performed to extract effective three-dimensional (3D) typhoon load input parameters. Then, by loading the obtained 3D wind load on the finite element model, a pseudo-dynamic analysis of the world’s tallest cooling tower “Luan Cooling Tower” is performed based on LS-DYNA explicit dynamic analysis, and the typhoon-induced collapse process is simulated. Finally, the stress distribution and distortions of the tower and the response time history of key units are compared and analyzed to determine the collapse mechanism. The process of collapse begins with large deformation of the windward surface of the tower throat, which shows folds in the range of 62° on both sides. Eventually, collapse occurs due to uncoordinated deformation. The collapse mechanism can be divided into a bending arch mechanism and a suspension wire mechanism. Full article
(This article belongs to the Special Issue Advances in Computational Fluid Dynamics: Methods and Applications)
Show Figures

Figure 1

23 pages, 12047 KB  
Article
Evolution Mechanism of Wind Vibration Coefficient and Stability Performance during the Whole Construction Process for Super Large Cooling Towers
by Shitang Ke, Peng Zhu, Lu Xu and Yaojun Ge
Appl. Sci. 2019, 9(20), 4202; https://doi.org/10.3390/app9204202 - 9 Oct 2019
Cited by 5 | Viewed by 3006
Abstract
Wind-induced damage during the construction process and the evolution of damage over time are important reasons for the wind-induced destruction of large cooling towers. In fact, wind vibration coefficient and stability performance will evolve with the construction height and material properties over time. [...] Read more.
Wind-induced damage during the construction process and the evolution of damage over time are important reasons for the wind-induced destruction of large cooling towers. In fact, wind vibration coefficient and stability performance will evolve with the construction height and material properties over time. However, the existing studies generally ignore the impact of wind load and structural performance during the construction period. In this study, we built the 3D physical model separately for all eight construction stages a super large cooling tower which is being currently constructed and stands 210 m. The dynamic characteristics of the cooling tower were analyzed in each stage. First, the flow field information and 3D time history of aerodynamic forces were obtained for the whole construction process using large eddy simulation (LES). Full transient dynamic finite element analysis was used to calculate the dynamic responses of the tower under the real-time changes of wind loads during the whole construction process. Five calculation methods were used to trace the evolution of wind vibration coefficient during the whole construction process of the super large cooling tower. Then the formula for wind vibration coefficient changing with the construction height was fitted. The differential values of wind vibration coefficient during the whole construction process of the cooling tower were discussed by taking the meridional axial force as the objective function. On this basis, the influence and working mechanism of wind vibration coefficient, concrete age, construction load, geometric nonlinearity, internal suction force on buckling stability, and ultimate bearing capacity of the cooling towers were investigated. This research provides an enhanced understanding on the evolution of wind-induced stability performance in super large cooling towers and a methodology to prevent wind-induced damage during the construction process. Full article
(This article belongs to the Special Issue Buildings and Structures under Extreme Loads)
Show Figures

Figure 1

Back to TopTop