Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = subway power supply systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
95 pages, 2088 KiB  
Review
Integration of Multi-Agent Systems and Artificial Intelligence in Self-Healing Subway Power Supply Systems: Advancements in Fault Diagnosis, Isolation, and Recovery
by Jianbing Feng, Tao Yu, Kuozhen Zhang and Lefeng Cheng
Processes 2025, 13(4), 1144; https://doi.org/10.3390/pr13041144 - 10 Apr 2025
Cited by 2 | Viewed by 2664
Abstract
The subway power supply system, as a critical component of urban rail transit infrastructure, plays a pivotal role in ensuring operational efficiency and safety. However, current systems remain heavily dependent on manual interventions for fault diagnosis and recovery, limiting their ability to meet [...] Read more.
The subway power supply system, as a critical component of urban rail transit infrastructure, plays a pivotal role in ensuring operational efficiency and safety. However, current systems remain heavily dependent on manual interventions for fault diagnosis and recovery, limiting their ability to meet the growing demand for automation and efficiency in modern urban environments. While the concept of “self-healing” has been successfully implemented in power grids and distribution networks, adapting these technologies to subway power systems presents distinct challenges. This review introduces an innovative approach by integrating multi-agent systems (MASs) with advanced artificial intelligence (AI) algorithms, focusing on their potential to create fully autonomous self-healing control architectures for subway power networks. The novel contribution of this review lies in its hybrid model, which combines MASs with the IEC 61850 communication standard to develop fault diagnosis, isolation, and recovery mechanisms specifically tailored for subway systems. Unlike traditional methods, which rely on centralized control, the proposed approach leverages distributed decision-making capabilities within MASs, enhancing fault detection accuracy, speed, and system resilience. Through a thorough review of the state of the art in self-healing technologies, this work demonstrates the unique benefits of applying MASs and AI to address the specific challenges of subway power systems, offering significant advancement over existing methodologies in the field. Full article
Show Figures

Figure 1

12 pages, 2334 KiB  
Article
Pantograph Slider Detection Architecture and Solution Based on Deep Learning
by Qichang Guo, Anjie Tang and Jiabin Yuan
Sensors 2024, 24(16), 5133; https://doi.org/10.3390/s24165133 - 8 Aug 2024
Viewed by 1477
Abstract
Railway transportation has been integrated into people’s lives. According to the “Notice on the release of the General Technical Specification of High-speed Railway Power Supply Safety Testing (6C System) System” issued by the National Railway Administration of China in 2012, it is required [...] Read more.
Railway transportation has been integrated into people’s lives. According to the “Notice on the release of the General Technical Specification of High-speed Railway Power Supply Safety Testing (6C System) System” issued by the National Railway Administration of China in 2012, it is required to install pantograph and slide monitoring devices in high-speed railway stations, station throats and the inlet and exit lines of high-speed railway sections, and it is required to detect the damage of the slider with high precision. It can be seen that the good condition of the pantograph slider is very important for the normal operation of the railway system. As a part of providing power for high-speed rail and subway, the pantograph must be paid attention to in railway transportation to ensure its integrity. The wear of the pantograph is mainly due to the contact power supply between the slide block and the long wire during high-speed operation, which inevitably produces scratches, resulting in depressions on the upper surface of the pantograph slide block. During long-term use, because the depression is too deep, there is a risk of fracture. Therefore, it is necessary to monitor the slider regularly and replace the slider with serious wear. At present, most of the traditional methods use automation technology or simple computer vision technology for detection, which is inefficient. Therefore, this paper introduces computer vision and deep learning technology into pantograph slide wear detection. Specifically, this paper mainly studies the wear detection of the pantograph slider based on deep learning and the main purpose is to improve the detection accuracy and improve the effect of segmentation. From a methodological perspective, this paper employs a linear array camera to enhance the quality of the data sets. Additionally, it integrates an attention mechanism to improve segmentation performance. Furthermore, this study introduces a novel image stitching method to address issues related to incomplete images, thereby providing a comprehensive solution. Full article
(This article belongs to the Special Issue Communications and Networking Based on Artificial Intelligence)
Show Figures

Figure 1

17 pages, 12405 KiB  
Article
Analysis of Stray Current Leakage in Subway Traction Power Supply System Based on Field-Circuit Coupling
by Shan Lin, Zhixi Tang, Xia Chen, Xuehua Liu and Yunsheng Liu
Energies 2024, 17(13), 3121; https://doi.org/10.3390/en17133121 - 25 Jun 2024
Cited by 2 | Viewed by 1605
Abstract
In a rail transit system, there is a constant leakage of current from the subway rails to the earth, and these stray currents have complex propagation paths and a wide range of influence. Since no stray current collection devices are installed at subway [...] Read more.
In a rail transit system, there is a constant leakage of current from the subway rails to the earth, and these stray currents have complex propagation paths and a wide range of influence. Since no stray current collection devices are installed at subway depots, some of the stray current leaking from the mainline will converge at the depot, seriously corroding the structural reinforcement and buried metal of the station, thereby jeopardizing the normal operation of subway trains and passenger safety. In this paper, a field-circuit coupling method is proposed to analyze the current leakage and distribution law of the subway mainline and depot. It is found that the failure of the gauge block at the mainline will trigger the maximum leakage of rail current. Additionally, it is observed that the stray current distribution at the depot is mainly influenced by the operating status of the one-way conduction device (OWCD) and the change of rail potential. These results validate the applicability and effectiveness of the field-circuit coupling method proposed in this paper and provide new technical support for the study of stray current leakage distribution in subways. Full article
Show Figures

Figure 1

16 pages, 5348 KiB  
Article
Urban Rail System Modeling and Simulation Based on Dynamic Train Density
by Xinyang Yu, Xin Wang and Yuxin Qin
Electronics 2024, 13(5), 853; https://doi.org/10.3390/electronics13050853 - 23 Feb 2024
Cited by 3 | Viewed by 1895
Abstract
To further improve the simulation calculation ability of urban rail traction systems during the peak operation period and provide an accurate and reliable simulation tool for the subsequent train schedule and energy storage system design, a multi-train circuit model with a bilateral power [...] Read more.
To further improve the simulation calculation ability of urban rail traction systems during the peak operation period and provide an accurate and reliable simulation tool for the subsequent train schedule and energy storage system design, a multi-train circuit model with a bilateral power supply was established in this paper, and a power calculation algorithm based on dynamic train density was designed. The circuit topology in the model can be dynamically adjusted according to the number of trains to improve the operation rate. Based on the spatial and electrical data of a real section of the subway, the urban rail circuit model was built on the MATLAB platform, and the actual operation data of the subway was imported for verification. The experimental results show that the multi-train model can accurately reflect the influence of voltage fluctuations on the traction system under different train running conditions, and the results fit the actual operation conditions. By comparing the influence of different train intervals on the RBE (regenerative braking energy) utilization, the results show that the optimal RBE utilization rate can be achieved by adjusting the train interval in the peak period. Full article
(This article belongs to the Topic Power System Modeling and Control, 2nd Edition)
Show Figures

Figure 1

21 pages, 10956 KiB  
Article
Train to Vehicle: Toward Sustainable Transportation in Dense Urban Regions
by Ahmed Ali A. Mohamed, Rohama Ahmad, Jaskaran Singh and Ahmed S. Rahman
Smart Cities 2023, 6(5), 2828-2848; https://doi.org/10.3390/smartcities6050127 - 16 Oct 2023
Cited by 2 | Viewed by 2184
Abstract
This article investigates the feasibility of using regenerative energy from braking trains to charge electric buses in the context of New York City’s (NYC) subway and electric bus networks. A case study centered around NYC’s system has been performed to evaluate the benefits [...] Read more.
This article investigates the feasibility of using regenerative energy from braking trains to charge electric buses in the context of New York City’s (NYC) subway and electric bus networks. A case study centered around NYC’s system has been performed to evaluate the benefits and challenges pertaining to the use of the preexisting subway network as a power supply for its new all-electric buses. The analysis shows that charging electric buses via the subway system during subway off-peak periods does not hinder regular train operation. In addition, having the charging electric buses connected to the third rail allows for more regenerative braking energy (RBE) to be recuperated, decreasing the energy wasted throughout the system. It was also found that including a wayside energy storage system (WESS) reduces the overall substation peak power consumption. Full article
Show Figures

Figure 1

21 pages, 8288 KiB  
Article
Multi-Train Energy Saving for Maximum Usage of Regenerative Energy by Dwell Time Optimization in Urban Rail Transit Using Genetic Algorithm
by Fei Lin, Shihui Liu, Zhihong Yang, Yingying Zhao, Zhongping Yang and Hu Sun
Energies 2016, 9(3), 208; https://doi.org/10.3390/en9030208 - 17 Mar 2016
Cited by 38 | Viewed by 9241
Abstract
With its large capacity, the total urban rail transit energy consumption is very high; thus, energy saving operations are quite meaningful. The effective use of regenerative braking energy is the mainstream method for improving the efficiency of energy saving. This paper examines the [...] Read more.
With its large capacity, the total urban rail transit energy consumption is very high; thus, energy saving operations are quite meaningful. The effective use of regenerative braking energy is the mainstream method for improving the efficiency of energy saving. This paper examines the optimization of train dwell time and builds a multiple train operation model for energy conservation of a power supply system. By changing the dwell time, the braking energy can be absorbed and utilized by other traction trains as efficiently as possible. The application of genetic algorithms is proposed for the optimization, based on the current schedule. Next, to validate the correctness and effectiveness of the optimization, a real case is studied. Actual data from the Beijing subway Yizhuang Line are employed to perform the simulation, and the results indicate that the optimization method of the dwell time is effective. Full article
Show Figures

Figure 1

23 pages, 1674 KiB  
Article
Optimal Energy Management, Location and Size for Stationary Energy Storage System in a Metro Line Based on Genetic Algorithm
by Huan Xia, Huaixin Chen, Zhongping Yang, Fei Lin and Bin Wang
Energies 2015, 8(10), 11618-11640; https://doi.org/10.3390/en81011618 - 16 Oct 2015
Cited by 81 | Viewed by 8221
Abstract
The installation of stationary super-capacitor energy storage system (ESS) in metro systems can recycle the vehicle braking energy and improve the pantograph voltage profile. This paper aims to optimize the energy management, location, and size of stationary super-capacitor ESSes simultaneously and obtain the [...] Read more.
The installation of stationary super-capacitor energy storage system (ESS) in metro systems can recycle the vehicle braking energy and improve the pantograph voltage profile. This paper aims to optimize the energy management, location, and size of stationary super-capacitor ESSes simultaneously and obtain the best economic efficiency and voltage profile of metro systems. Firstly, the simulation platform of an urban rail power supply system, which includes trains and super-capacitor energy storage systems, is established. Then, two evaluation functions from the perspectives of economic efficiency and voltage drop compensation are put forward. Ultimately, a novel optimization method that combines genetic algorithms and a simulation platform of urban rail power supply system is proposed, which can obtain the best energy management strategy, location, and size for ESSes simultaneously. With actual parameters of a Chinese metro line applied in the simulation comparison, certain optimal scheme of ESSes’ energy management strategy, location, and size obtained by a novel optimization method can achieve much better performance of metro systems from the perspectives of two evaluation functions. The simulation result shows that with the increase of weight coefficient, the optimal energy management strategy, locations and size of ESSes appear certain regularities, and the best compromise between economic efficiency and voltage drop compensation can be obtained by a novel optimization method, which can provide a valuable reference to subway company. Full article
(This article belongs to the Special Issue Control of Energy Storage)
Show Figures

Figure 1

Back to TopTop