Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = sub-Riemannian geodesics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 584 KiB  
Article
A Cortical-Inspired Contour Completion Model Based on Contour Orientation and Thickness
by Ivan Galyaev and Alexey Mashtakov
J. Imaging 2024, 10(8), 185; https://doi.org/10.3390/jimaging10080185 - 31 Jul 2024
Viewed by 1425
Abstract
An extended four-dimensional version of the traditional Petitot–Citti–Sarti model on contour completion in the visual cortex is examined. The neural configuration space is considered as the group of similarity transformations, denoted as M=SIM(2). The left-invariant subbundle of the tangent bundle [...] Read more.
An extended four-dimensional version of the traditional Petitot–Citti–Sarti model on contour completion in the visual cortex is examined. The neural configuration space is considered as the group of similarity transformations, denoted as M=SIM(2). The left-invariant subbundle of the tangent bundle models possible directions for establishing neural communication. The sub-Riemannian distance is proportional to the energy expended in interneuron activation between two excited border neurons. According to the model, the damaged image contours are restored via sub-Riemannian geodesics in the space M of positions, orientations and thicknesses (scales). We study the geodesic problem in M using geometric control theory techniques. We prove the existence of a minimal geodesic between arbitrary specified boundary conditions. We apply the Pontryagin maximum principle and derive the geodesic equations. In the special cases, we find explicit solutions. In the general case, we provide a qualitative analysis. Finally, we support our model with a simulation of the association field. Full article
(This article belongs to the Special Issue Modelling of Human Visual System in Image Processing)
Show Figures

Figure 1

25 pages, 359 KiB  
Article
Sub-Riemannian Geometry of Curves and Surfaces in Roto-Translation Group Associated with Canonical Connection
by Han Zhang and Haiming Liu
Mathematics 2024, 12(11), 1683; https://doi.org/10.3390/math12111683 - 28 May 2024
Viewed by 1037
Abstract
The aim of this paper is to obtain the sub-Riemannian properties of the roto-translation group RT. At the same time, we compute the sub-Riemannian limits of Gaussian curvature associated with two kinds of canonical connections for a C2-smooth surface [...] Read more.
The aim of this paper is to obtain the sub-Riemannian properties of the roto-translation group RT. At the same time, we compute the sub-Riemannian limits of Gaussian curvature associated with two kinds of canonical connections for a C2-smooth surface in the roto-translation group away from characteristic points and signed geodesic curvature associated with two kinds of canonical connections for C2-smooth curves on surfaces. Based on these results, we obtain a Gauss-Bonnet theorem in the RT. Full article
(This article belongs to the Section B: Geometry and Topology)
31 pages, 1755 KiB  
Article
Time-Optimal Problem in the Roto-Translation Group with Admissible Control in a Circular Sector
by Alexey Mashtakov and Yuri Sachkov
Mathematics 2023, 11(18), 3931; https://doi.org/10.3390/math11183931 - 15 Sep 2023
Cited by 1 | Viewed by 1130
Abstract
We study a time-optimal problem in the roto-translation group with admissible control in a circular sector. The problem reveals the trajectories of a car model that can move forward on a plane and turn with a given minimum turning radius. Our work generalizes [...] Read more.
We study a time-optimal problem in the roto-translation group with admissible control in a circular sector. The problem reveals the trajectories of a car model that can move forward on a plane and turn with a given minimum turning radius. Our work generalizes the sub-Riemannian problem by adding a restriction on the velocity vector to lie in a circular sector. The sub-Riemannian problem is given by a special case when the sector is the full disc. The trajectories of the system are applicable in image processing to detect salient lines. We study the local and global controllability of the system and the existence of a solution for given arbitrary boundary conditions. In a general case of the sector opening angle, the system is globally but not small-time locally controllable. We show that when the angle is obtuse, a solution exists for any boundary conditions, and when the angle is reflex, a solution does not exist for some boundary conditions. We apply the Pontryagin maximum principle and derive a Hamiltonian system for extremals. Analyzing a phase portrait of the Hamiltonian system, we introduce the rectified coordinates and obtain an explicit expression for the extremals in Jacobi elliptic functions. We show that abnormal extremals are of circular type, and they correspond to motions of a car along circular arcs of minimal possible radius. The normal extremals in a general case are given by concatenation of segments of sub-Riemannian geodesics in SE2 and arcs of circular extremals. We show that, in a general case, the vertical (momentum) part of the extremals is periodic. We partially study the optimality of the extremals and provide estimates for the cut time in terms of the period of the vertical part. Full article
(This article belongs to the Special Issue Variational Methods on Riemannian Manifolds: Theory and Applications)
Show Figures

Figure 1

12 pages, 303 KiB  
Article
New Generalization of Geodesic Convex Function
by Ohud Bulayhan Almutairi and Wedad Saleh
Axioms 2023, 12(4), 319; https://doi.org/10.3390/axioms12040319 - 23 Mar 2023
Cited by 1 | Viewed by 1534
Abstract
As a generalization of a geodesic function, this paper introduces the notion of the geodesic φE-convex function. Some properties of the φE-convex function and geodesic φE-convex function are established. The concepts of a geodesic φE-convex [...] Read more.
As a generalization of a geodesic function, this paper introduces the notion of the geodesic φE-convex function. Some properties of the φE-convex function and geodesic φE-convex function are established. The concepts of a geodesic φE-convex set and φE-epigraph are also given. The characterization of geodesic φE-convex functions in terms of their φE-epigraphs, are also obtained. Full article
44 pages, 525 KiB  
Article
Integrable Systems: In the Footprints of the Greats
by Velimir Jurdjevic
Mathematics 2023, 11(4), 1063; https://doi.org/10.3390/math11041063 - 20 Feb 2023
Cited by 3 | Viewed by 2123
Abstract
In his 1842 lectures on dynamics C.G. Jacobi summarized difficulties with differential equations by saying that the main problem in the integration of differential equations appears in the choice of right variables. Since there is no general rule for finding the right choice, [...] Read more.
In his 1842 lectures on dynamics C.G. Jacobi summarized difficulties with differential equations by saying that the main problem in the integration of differential equations appears in the choice of right variables. Since there is no general rule for finding the right choice, it is better to introduce special variables first, and then investigate the problems that naturally lend themselves to these variables. This paper follows Jacobi’s prophetic observations by introducing certain “meta” variational problems on semi-simple reductive groups G having a compact subgroup K. We then use the Maximum Principle of optimal control to generate the Hamiltonians whose solutions project onto the extremal curves of these problems. We show that there is a particular sub-class of these Hamiltonians that admit a spectral representation on the Lie algebra of G. As a consequence, the spectral invariants associated with the spectral curve produce a large number of integrals of motion, all in involution with each other, that often meet the Liouville complete integrability criteria. We then show that the classical integrals of motion associated, with the Kowalewski top, the two-body problem of Kepler, and Jacobi’s geodesic problem on the ellipsoid can be all derived from the aforementioned Hamiltonian systems. We also introduce a rolling geodesic problem that admits a spectral representation on symmetric Riemannian spaces and we then show the relevance of the corresponding integrals on the nature of the curves whose elastic energy is minimal. Full article
(This article belongs to the Special Issue Completely Integrable Equations: Algebraic Aspects and Applications)
20 pages, 380 KiB  
Review
Integral Formulas for Almost Product Manifolds and Foliations
by Vladimir Rovenski
Mathematics 2022, 10(19), 3645; https://doi.org/10.3390/math10193645 - 5 Oct 2022
Cited by 2 | Viewed by 1619
Abstract
Integral formulas are powerful tools used to obtain global results in geometry and analysis. The integral formulas for almost multi-product manifolds, foliations and multiply twisted products of Riemannian, metric-affine and sub-Riemannian manifolds, to which this review paper is devoted, are useful for studying [...] Read more.
Integral formulas are powerful tools used to obtain global results in geometry and analysis. The integral formulas for almost multi-product manifolds, foliations and multiply twisted products of Riemannian, metric-affine and sub-Riemannian manifolds, to which this review paper is devoted, are useful for studying such problems as (i) the existence and characterization of foliations with a given geometric property, such as being totally geodesic, minimal or totally umbilical; (ii) prescribing the generalized mean curvatures of the leaves of a foliation; (iii) minimizing volume-like functionals defined for tensors on foliated manifolds. We start from the series of integral formulas for codimension one foliations of Riemannian and metric-affine manifolds, and then we consider integral formulas for regular and singular foliations of arbitrary codimension. In the second part of the article, we represent integral formulas with the mixed scalar curvature of an almost multi-product structure on Riemannian and metric-affine manifolds, give applications to hypersurfaces of space forms with k=2,3 distinct principal curvatures of constant multiplicities and then discuss integral formulas for foliations or distributions on sub-Riemannian manifolds. Full article
(This article belongs to the Section E: Applied Mathematics)
10 pages, 3143 KiB  
Article
Liouville Integrability in a Four-Dimensional Model of the Visual Cortex
by Ivan Galyaev and Alexey Mashtakov
J. Imaging 2021, 7(12), 277; https://doi.org/10.3390/jimaging7120277 - 17 Dec 2021
Cited by 1 | Viewed by 2228
Abstract
We consider a natural extension of the Petitot–Citti–Sarti model of the primary visual cortex. In the extended model, the curvature of contours is taken into account. The occluded contours are completed via sub-Riemannian geodesics in the four-dimensional space M of positions, orientations, and [...] Read more.
We consider a natural extension of the Petitot–Citti–Sarti model of the primary visual cortex. In the extended model, the curvature of contours is taken into account. The occluded contours are completed via sub-Riemannian geodesics in the four-dimensional space M of positions, orientations, and curvatures. Here, M=R2×SO(2)×R models the configuration space of neurons of the visual cortex. We study the problem of sub-Riemannian geodesics on M via methods of geometric control theory. We prove complete controllability of the system and the existence of optimal controls. By application of the Pontryagin maximum principle, we derive a Hamiltonian system that describes the geodesics. We obtain the explicit parametrization of abnormal extremals. In the normal case, we provide three functionally independent first integrals. Numerical simulations indicate the existence of one more first integral that results in Liouville integrability of the system. Full article
Show Figures

Figure 1

19 pages, 1440 KiB  
Article
The Information Geometry of Sensor Configuration
by Simon Williams, Arthur George Suvorov, Zengfu Wang and Bill Moran
Sensors 2021, 21(16), 5265; https://doi.org/10.3390/s21165265 - 4 Aug 2021
Cited by 3 | Viewed by 3007
Abstract
In problems of parameter estimation from sensor data, the Fisher information provides a measure of the performance of the sensor; effectively, in an infinitesimal sense, how much information about the parameters can be obtained from the measurements. From the geometric viewpoint, it is [...] Read more.
In problems of parameter estimation from sensor data, the Fisher information provides a measure of the performance of the sensor; effectively, in an infinitesimal sense, how much information about the parameters can be obtained from the measurements. From the geometric viewpoint, it is a Riemannian metric on the manifold of parameters of the observed system. In this paper, we consider the case of parameterized sensors and answer the question, “How best to reconfigure a sensor (vary the parameters of the sensor) to optimize the information collected?” A change in the sensor parameters results in a corresponding change to the metric. We show that the change in information due to reconfiguration exactly corresponds to the natural metric on the infinite-dimensional space of Riemannian metrics on the parameter manifold, restricted to finite-dimensional sub-manifold determined by the sensor parameters. The distance measure on this configuration manifold is shown to provide optimal, dynamic sensor reconfiguration based on an information criterion. Geodesics on the configuration manifold are shown to optimize the information gain but only if the change is made at a certain rate. An example of configuring two bearings-only sensors to optimally locate a target is developed in detail to illustrate the mathematical machinery, with Fast Marching methods employed to efficiently calculate the geodesics and illustrate the practicality of using this approach. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

21 pages, 2983 KiB  
Article
Anisotropically Weighted and Nonholonomically Constrained Evolutions on Manifolds
by Stefan Sommer
Entropy 2016, 18(12), 425; https://doi.org/10.3390/e18120425 - 26 Nov 2016
Cited by 10 | Viewed by 6469
Abstract
We present evolution equations for a family of paths that results from anisotropically weighting curve energies in non-linear statistics of manifold valued data. This situation arises when performing inference on data that have non-trivial covariance and are anisotropic distributed. The family can be [...] Read more.
We present evolution equations for a family of paths that results from anisotropically weighting curve energies in non-linear statistics of manifold valued data. This situation arises when performing inference on data that have non-trivial covariance and are anisotropic distributed. The family can be interpreted as most probable paths for a driving semi-martingale that through stochastic development is mapped to the manifold. We discuss how the paths are projections of geodesics for a sub-Riemannian metric on the frame bundle of the manifold, and how the curvature of the underlying connection appears in the sub-Riemannian Hamilton–Jacobi equations. Evolution equations for both metric and cometric formulations of the sub-Riemannian metric are derived. We furthermore show how rank-deficient metrics can be mixed with an underlying Riemannian metric, and we relate the paths to geodesics and polynomials in Riemannian geometry. Examples from the family of paths are visualized on embedded surfaces, and we explore computational representations on finite dimensional landmark manifolds with geometry induced from right-invariant metrics on diffeomorphism groups. Full article
(This article belongs to the Special Issue Differential Geometrical Theory of Statistics)
Show Figures

Figure 1

Back to TopTop