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Abstract: As a generalization of a geodesic function, this paper introduces the notion of the geodesic
ϕE-convex function. Some properties of the ϕE-convex function and geodesic ϕE-convex function are es-
tablished. The concepts of a geodesic ϕE-convex set and ϕE-epigraph are also given. The characterization
of geodesic ϕE-convex functions in terms of their ϕE-epigraphs, are also obtained.
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1. Introduction

Convexity is an essential concept in pure and applied mathematics, serving as a potent
instrument for analyzing functions and sets, establishing inequalities, and modeling and
solving real-world problems. This concept is crucial for estimating integrals and establishing
bounds in numerous mathematical fields and beyond [1–7]. Thus, the convex function can be
defined as follows:

A function h : U ⊆ R −→ R is convex if

h(ηu1 + (1− η)u2) ≤ ηh(u1) + (1− η)h(u2), ∀u1, u2 ∈ U, η ∈ [0, 1]. (1)

If the inequality sign in (1) is reversed, then h is called a concave function on the set U.
For example, in economics, for a production function u = h(L), the concavity of h

is expressed by saying that h exhibits diminishing returns. If h is convex, then it exhibits
increasing returns. On the other hand, many new problems in applied mathematics are
encountered where the notion of convexity is not enough to describe them, in order to
reach favorable results. For this reason, the concept of convexity has been extended and
generalized in several studies, see [8–13]. Curvature and torsion of Riemannian manifolds
lead to a high level of nonlinearity when examining the convexity of such manifolds.
A geodesic, is a locally length-minimizing curve, and the notion of a geodesic convex
function occurs naturally in a complete Riemannian manifold, which has been studied
in [14,15]. The geodesic bifurcation has equally been studied by many authors [16,17].

In 1999, an important generalization of the convex function, called the E-convex
function, was defined by Youness [18]. This type of function has some applications in
various branches of mathematical sciences [19,20]. On the other hand, Yang [21] showed
that some results given by Youness [18] seem to be incorrect. Following these developments,
Duca and Lupşa [22] fixed the mistakes in both Youness [18] and Yang [21]. Therefore,
Chen [23] extended E-convexity to a semi E-convexity and discussed some of its properties.
For more results on the E-convex function and semi E-convex function, one should consult
the following references [22,24–27]. The geodesic convexity involving sets was first studied
by [28], who extended the existing concept of geodesic convexity defined by [29]. Geodesic
E-convex sets and geodesic E-convex functions on Riemannian manifolds, are a new class
of convex sets and functions, that Iqbal et al. introduced and researched in [26], these were
extended to geodesic strongly E-convex sets and geodesic strongly E-convex functions in
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2015, by Adem and Saleh [30]. In addition, Iqbal et al. [25] introduced geodesic semi E-
convex functions. Following these developments, Adem and Saleh [4] introduced geodesic
semi E-b-vex (GSEB) functions, of which some properties were discussed.

Other developments include the work of Eshaghi Gordji et al. [31], who introduced
the notion of a ϕ-convex function, in 2016. They equally studied Jensen and Hermite–
Hadamard type inequalities related to this function. Moreover, the notion of ϕE-convex
functions was defined as the generalization of ϕ-convex functions. Absos et al. further
introduced the notion of a geodesic ϕ-convex function, through which some basic properties
of this function were studied [32].

The structure of this article is as follows. Basic information about convex functions and
convex sets is covered in Section 2. The evaluation of the properties of ϕE-convex functions
is covered in Section 3. In Section 4, we discuss a new class of functions on Riemannian
manifolds, called the geodesic ϕE-convex function. Some of the properties of this function
are also studied. In Section 5, the characterization of geodesic ϕE-convex functions, through
their corresponding ϕE-epigraphs, is reported.

2. Preliminaries

This section provides some definitions and properties that can later be used in the
study, to report our results. Several definitions and properties of real number sets and the
Riemannian manifold can be found in many different geometry books and papers [15].
Throughout this paper, we consider an interval U = [u1, u2] in R and ϕ : R×R −→ R is a
bifunction.

Definition 1. Ref. [31]. A function h : U −→ R is called ϕ-convex if

h(tu1 + (1− t)u2) ≤ h(u2) + tϕ(h(u1), h(u2)), (2)

for all u1, u2 ∈ U, t ∈ [0, 1]

In the above definition, if ϕ(h(u1), h(u2)) = h(u1)− h(u2), then inequality (2) becomes
inequality (1).

Definition 2. Ref. [31]. The function ϕ : R×R −→ R, is called

1. additive if

ϕ(u1 + v1, u2 + v2) = ϕ(u1, u2) + ϕ(v1, v2), ∀u1, u2, v1, v2 ∈ R.

2. non-negatively homogeneous if

ϕ(tu1, tu2) = tϕ(u1, u2), ∀u1, u2 ∈ R, t > 0.

3. non-negatively linear if ϕ is both non-negatively homogeneous and additive.

Definition 3. Ref. [18]. A set U ⊂ Rn, is said to be an E-convex set if there is a mapping
E : Rn −→ Rn, such that

t(E(u1)) + (1− t)E(u2) ∈ U, ∀u1, u2 ∈ U, t ∈ [0, 1]

Definition 4. Refs. [18,31]. Consider U ⊂ Rn to be an E-convex set, then the function h : U −→
R is said to be

1. an E-convex function, if

h(tE(u1) + (1− t)E(u2) ≤ th(E(u1)) + (1− t)h(E(u2)), (3)

∀u1, u2 ∈ U, t ∈ [0, 1]
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2. a ϕE-convex function, if

h(tE(u1) + (1− t)E(u2) ≤ h(E(u2)) + tϕ(h(E(u1)), h(E(u2)), (4)

∀u1, u2 ∈ U, t ∈ [0, 1]

If ϕ(h(E(u1)), h(E(u2)) = h(E(u1))− h(E(u2)) in inequality (4), then we obtain the
E-convex function.

Now, let (N, g) be a complete m-dimensional Riemannian manifold, with Riemannian
connection 5. If a1 and a2 are two points on N, and γ : [µ1, µ2] −→ N is a piecewise
smooth curve joining γ(µ1) = a1 to γ(µ2) = a2 and its length, L(γ), is defined by

L(γ) =
∫ µ2

µ1

‖dγ(λ)

dλ
‖dλ.

For any two points a1, a2 ∈ N, we define d(a1, a2) = inf{L(γ) : γ a piecewise smooth
curve connecting the points a1 to a2}.

Then d is a metric, which induces the original topology on N.
For every Riemannian manifold, there is a unique determined Riemannian connection,

called a Levi–Civita connection, denoted by 5XY, for any vector fields X, Y ∈ N. In
addition, a smooth path γ, is a geodesic if and only if its tangent vector is a parallel vector
field along the path γ, i.e., γ satisfies the equation5 dγ(t)

dt

dγ(t)
dt = 0. Any path γ joining µ1

and µ2 in N, such that L(γ) = d(µ1, µ2), is a geodesic and is called a minimal geodesic. Let
N be a C∞ complete n-dimensional Riemannian manifold, with metric g and Levi–Civita
connection 5. Moreover, considering that the points µ1, µ2 ∈ N and γ : [0, 1] −→ N is a
geodesic joining µ1, µ2, i.e., γµ1,µ2(0) = µ2 and γµ1,µ2(1) = µ1.

Definition 5. Ref. [33]. Assume that N1, N2 are smooth manifolds. A map h : N1 −→ N2 is a
diffeomorphism if it is smooth, bijective, and the inverse h−1 is smooth.

Definition 6. Ref. [15]. A subset U ⊆ N, is called t-convex if and only if U contains every
geodesic γµ1,µ2 of N whose endpoints µ1 and µ2 are in U.

Remark 1. If U1 and U2 are t-convex sets, then U1 ∩U2 is a t-convex set, but U1 ∪U2 is not
necessarily a t-convex set.

Definition 7. Ref. [15]. A function h : U ⊂ N −→ R is called geodesic convex if and only if for
all geodesic arcs γµ1,µ2 , then

h(γµ1,µ2(t)) ≤ th(µ1) + (1− t)h(µ2)

for each µ1, µ2 ∈ U and t ∈ [0, 1].

Definition 8. Ref. [26]. A set U ⊂ N, is geodesic E-convex, where E : N −→ N, if and only
if there exists a unique geodesic γE(µ1),E(µ2)

(t)of length d(µ1, µ2), which belongs to U for every
µ1, µ2 ∈ U and t ∈ [0, 1].

Definition 9. Refs. [26,32]. A function h : U −→ R is said to be

1. geodesic E-convex if U is a geodesic E-convex set and

h(γE(µ1),E(µ2)
(t)) ≤ th(E(µ1)) + (1− t)h(E(µ2)), ∀µ1, µ2 ∈ U, t ∈ [0, 1].

2. geodesic ϕ-convex if U is a t-convex set and

h(γµ1,µ2(t)) ≤ h(µ2) + tϕ(h(µ1), h(µ2)), ∀µ1, µ2 ∈ U, t ∈ [0, 1].
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3. Some Properties of ϕE-Convex Functions

This part of the work deals with some properties of ϕE-convex functions. Considering
that h : B −→ R is a ϕE-convex function and E : R −→ R, we present the following. For any
two points E(µ1), E(µ2) ∈ B with E(µ1) < E(µ2) and for each point E(µ) ∈ (E(µ1), E(µ2))
can be expressed as

E(µ) = tE(µ1) + (1− t)E(µ1), t =
E(µ2)− E(µ)
E(µ2)− E(µ1)

.

Also, since a function h is ϕE-convex function if

h(E(µ)) ≤ h(E(µ2)) +
E(µ2)− E(µ)
E(µ2)− E(µ1)

ϕ(h(E(µ1)), h(E(µ2))),

then

h(E(µ2))− h(E(µ))
E(µ2)− E(µ)

>
ϕ(h(E(µ1)), h(E(µ2)))

E(µ1)− E(µ2)
, (5)

∀E(µ) ∈ (E(µ2), E(µ1)).
Hence, we can say that a function h is a ϕE-convex function if it satisfies the inequality (5).
The next example shows that a ϕE-convex function is not necessarily a ϕ-convex function.

Example 1. Consider

h(u1) =

{
1; u1 > 0,
−u2

1; u1 < 0,

with E(u1) = −a where a ∈ R+ and ϕ(u1, u2) = u1 − 2u2. Then h(tE(u1) + (1− t)E(u2)) =
−a2 while h(E(u2)) + tϕ(h(E(u1)), h(E(u2))) = (t− 1)a2, which means that h is a ϕE-convex
function. On the other hand, if we take u1 > 0 and u2 > 0, then h is not a ϕ-convex function.

Theorem 1. If h : B ⊂ E(R) −→ R is differentiable and a ϕE-convex function in B, and
h(E(u1)) 6= h(E(u2)), then there are E(α), E(β) ∈ (E(u2), E(u1)) ⊂ B, such that

h′(E(α)) >
ϕ(h(E(u1)), h(E(u2)))

h(E(u1))− h(E(u2))
h′(E(β)) > h′(E(β)).

Proof. Since h is a ϕE-convex function, then

h(E(u2))− h(E(u))
E(u2)− E(u)

>
ϕ(h(E(u1)), h(E(u2)))

E(u1)− E(u2)

=
ϕ(h(E(u1)), h(E(u2)))

h(E(u1))− h(E(u2))
× h(E(u1))− h(E(u2))

E(u1)− E(u2)
. (6)

Now, applying the mean value theorem, then the inequality (6) can be written as

h′(E(α)) >
ϕ(h(E(u1)), h(E(u2)))

h(E(u1))− h(E(u2))
h′(E(β)), (7)

for some E(α) ∈ (E(u1), E(u)) ⊂ (E(u1), E(u2)) and E(β) ∈ (E(u1), E(u2)).
Since ϕ(h(E(u1)), h(E(u2))) > h(E(u1))− h(E(u2)), then the inequality (7) yields

h′(E(α)) >
ϕ(h(E(u1)), h(E(u2)))

h(E(u1))− h(E(u2))
h′(E(β)) > h′(E(β)).
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Theorem 2. Assume that h : B −→ R is a differentiable ϕE-convex function. Then, for all
E(µi) ∈ B, i = 1, 2, 3, such that E(µ1) < E(µ2) < E(µ3), the following inequality holds

h′(E(µ2)) + h′(E(µ3)) ≤
ϕ(h(E(µ1)), h(E(µ2))) + ϕ(h(E(µ2)), h(E(µ3)))

E(µ1), E(µ3)
.

Proof. Since h is ϕE-convex in each interval W1 = [E(µ1), E(µ2)] and W2 = [E(µ2), E(µ3)],
hence

h(tE(µ1) + (1− t)E(µ2)) ≤ h(E(µ2)) + tϕ(h(E(µ1)), h(E(µ2))) (8)

and

h(tE(µ2) + (1− t)E(µ3)) ≤ h(E(µ3)) + tϕ(h(E(µ2)), h(E(µ3))). (9)

From inequalities (8) and (9), we get

h(tE(µ1) + (1− t)E(µ2))− h(E(µ2)) + h(tE(µ2) + (1− t)E(µ3))− h(E(µ3))

t
≤ ϕ(h(E(µ1)), h(E(µ2))) + ϕ(h(E(µ2)), h(E(µ3))).

Now, setting t −→ 0, we get

h′(E(µ2))(E(µ1)− E(µ2)) + h′(E(µ3))(E(µ2)− E(µ3))

≤ ϕ(h(E(µ1)), h(E(µ2))) + ϕ(h(E(µ2)), h(E(µ3))). (10)

Also, E(µ3) > E(µ2) and E(µ2) > E(µ1), which means that E(µ1)− E(µ3) < E(µ1)−
E(µ2) and E(µ1)− E(µ3) < E(µ2)− E(µ3), then

(E(µ1)− E(µ3))(h′(E(µ2)) + h′(E(µ3)))

≤ (E(µ1)− E(µ2))h′(E(µ2)) + (E(µ2)− E(µ3))h′(E(µ3)). (11)

Hence, from inequalities (10) and (11), we get the required result.

4. Properties of Geodesic ϕE-Convex Functions

This section makes the assumption that µ1, µ2 ∈ N and γ : [0, 1] −→ N is a geodesic
joining µ1, µ2, i.e., γµ1,µ2(0) = µ2 and γµ1,µ2(1) = µ1, and E is a mapping, such that
E : N −→ N, where N is a C∞ complete n-dimensional Riemannian manifold, with
Riemannian connection5. In addition, we define the geodesic ϕE-convex function in N
and examine some of its characteristics.

Definition 10. A function h : B −→ R is geodesic ϕE-convex if B is also a geodesic E-convex
set and

h(γE(µ1),E(µ2)
(t)) ≤ h(E(µ2)) + tϕ(h(E(µ1)), h(E(µ2))),

for all µ1, µ2 ∈ B, t ∈ [0, 1].
If the above inequality strictly holds for all µ1, µ2 ∈ B, E(µ1) 6= E(µ2), t ∈ [0, 1], then h is

called a strictly geodesic ϕE-convex function.

Remark 2. If E is identity mapped in the above definition, then we have a geodesic ϕ-convex
function. Moreover, if

ϕ(h(E(µ1)), h(E(µ2))) = (h(E(µ1))− h(E(µ2))),

then we have a geodesic E-convex function.
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Example 2. This example shows that the geodesic ϕE-convex function on N does not necessarily
have to be geodesic convex. Let N = R× S1 and h : N −→ R is defined as h(µ, a) = µ3, then h is
not geodesic convex in N. Now, by taking a function ϕ : R×R −→ R asϕ(µ1, µ2) = µ3

1 − µ3
2

and E : R −→ R+, then for any two points (µ1, a) and (µ2, b), the geodesic joining them is
a portion of a helix of the form γ(t) = (tµ1 + (1− t)µ2, expi[tω1+(1−t)ω2]) for t ∈ [0, 1] and
expiω1 = a, expiω2 = b for ω1, ω2 ∈ [0, 2π]. Hence,

h(γE(µ1),E(µ2)
) = (tE(µ1) + (1− t)E(µ2))

3

= t3(E(µ1)− E(µ2))
3 + t2(3E2(µ1)E(µ2)− 6E(µ1)E2(µ2))

+ 3E3(µ2) + t[3E(µ1)E2(µ2)− 3E3(µ2)] + E3(µ2)

≤ E3(µ2) + t[E3(µ1)− E3(µ2)]

= h(E(µ2), b) + tϕ(h(E(µ1), a), hE(µ2), b). (12)

Then h is a geodesic ϕE-convex function.

Theorem 3. Considering that B ⊂ N is an E-convex set, then a function h : B −→ R is a geodesic
ϕE-convex if and only if for each u1, u2 ∈ B the function K = h ◦ γE(u1),E(u2)

is ϕE-convex
on [0, 1].

Proof. Let K be ϕE-convex on [0, 1], then

K(tE(µ1) + (1− t)E(µ2)) ≤ K(E(µ2)) + tϕ(K(E(µ1)), K(E(µ2))) (13)

holds.
Also, let E(µ1) = 1, E(µ2) = 0, then K(t) ≤ K(0) + tϕ(K(1), K(0)). Hence

h(γE(µ1),E(µ2)
(t)) ≤ h(E(µ2)) + tϕ(h(E(µ1)), h(E(µ2))).

Conversely, assume that h is a geodesic ϕE-convex function. By restricting the domain
of γE(µ1),E(µ2)

to [η1, η2], and hence the parametrized form of this restriction can be rewritten
as

α(t) = γE(µ1),E(µ2)
(tE(µ1) + (1− t)E(µ2))

α(0) = γE(µ1),E(µ2)
(E(µ2)).

Since h(α(t)) ≤ h(α(0)) + tϕ(h(α(1)), h(α(0))). That means

h(γE(µ1),E(µ2)
(tE(µ1) + (1− t)E(µ2)))

≤ h(γE(µ1),E(µ2)
(E(µ2))) + tϕ(h(γ(E(µ1))), h(γ(E(µ2))))

It follows that

K(tE(µ1) + (1− t)E(µ2)))

≤ K(E(µ2)) + tϕ(K(E(µ1)), K(E(µ2)))

Hence, K is ϕE-convex on [0, 1].

Proposition 1. 1. If h : B −→ R is a geodesic ϕE-convex function, where ϕ is non-negative
linear, then xh : B −→ R, ∀x > 0 is also geodesic ϕE-convex.

2. Let hi : B −→ R, i = 1, 2 be two geodesic ϕE-convex functions, where ϕ is additive, then
h1 + h2 is also a geodesic ϕE-convex function.

Theorem 4. Suppose that B ⊂ N is a geodesic E-convex set, h1 : B −→ R is a geodesic E-convex
function, and h2 : U −→ R is a non-decreasing ϕE-convex function, such that Rang(h1) ⊆ U.
Then, h2oh1 is also a geodesic ϕE-convex.
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Proof. The above theorem can be proved in the following way

h2◦h1(γE(µ1),E(µ2)
) = h2

(
h1(γE(µ1),E(µ2)

)
)

≤ h2(h1(E(µ2)) + tϕ(h1(E(µ1)), h1(E(µ2))))

≤ h2(h1(E(µ2))) + tϕ(h2(h1(E(µ1))), h2(h1(E(µ2))))

= h2oh1(E(µ2)) + tϕ(h2oh1(E(µ1)), h2oh1(E(µ2))).

Thus, h2◦h1 is a geodesic ϕE-convex function.

Theorem 5. Suppose that, hi : B ⊂ N −→ R, i = 1, 2, · · · , n are geodesic ϕE-convex functions
and ϕ is non-negatively linear. Then the function h = ∑n

i=1 xihi is also a geodesic ϕE-convex, for
all xi ∈ R and xi > 0.

Proof. Considering µ1, µ2 ∈ B, and since hi, i = 1, 2, · · · , n are geodesic ϕE-convex func-
tions, then

hi(γE(µ1),E(µ2)
) ≤ hi(E(µ2)) + tϕ(hi(E(µ1)), hi(E(µ2))).

Also,

xihi(γE(µ1),E(µ2)
) ≤ xihi(E(µ2)) + tϕ(xihi(E(µ1)), xihi(E(µ2))).

Hence,

n

∑
i=1

xihi(γE(µ1),E(µ2)
) ≤

n

∑
i=1

[xihi(E(µ2)) + tϕ(xihi(E(µ1)), xihi(E(µ2)))],

which means that

h(γE(µ1),E(µ2)
) ≤ h(E(µ2)) + tϕ(h(E(µ1)), h(E(µ2))).

Now we consider that N1 and N2 are two complete Riemannian manifolds, and5 is
the Levi–Civita connection on N1. If H : N1 −→ N2 is a diffeomorphism, then H ∗5 = 5∗
is an affine connection of N2. Moreover, let γ be a geodesic in (N1,5), then Hoγ is also a
geodesic in (N2,5∗), see [15].

Theorem 6. Suppose that h : B −→ R is a geodesic ϕE-convex function and H : N1 −→ N2,
then a sufficient condition for hoH−1 : H(B) −→ R to be a geodesic ϕE-convex function, is H
must be a diffeomorphism.

Proof. Assume that γE(µ1),E(µ2)
is a geodesic joining E(µ1) and E(µ2), where µ1, µ2 ∈ B.

Since H is a diffeomorphism, then H(B) is totally geodesic, and HoγE(µ1),E(µ2)
is geodesic

joining H(E(µ1)) and H(E(µ2)). Then

(hoH−1)
(

HoγE(µ1),E(µ2)
(t)
)

= h(γE(µ1),E(µ2)
(t))

≤ h(E(µ2)) + tϕ(h(E(µ1)), h(E(µ2)))

= (hoH−)(H(E(µ2))) + tϕ
(
(hoH−)(E(µ1)), (hoH−)(E(µ2))

)
.

Theorem 7. Assume that h : B −→ R is a geodesic ϕE-convex function, and ϕ bounded from
above on h(B)× h(B), with an upper bound k. Then h is continuous on Int(B).
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Proof. Assume that E(µ∗) ∈ Int(B), then there exists an open ball B(E(µ∗), r) ⊂ Int(B) for
some r > 0. Let us choose s, where (0 < s < r), such that the closed ball B̄(E(µ∗), s + ε) ⊂
B(E(µ∗), r) for some arbitrary small ε > 0. Choose any E(µ1), E(µ2) ∈ B̄(E(µ∗), s). Put
E(µ3) = E(µ2) +

ε
‖µ2−µ1‖

(E(µ2) − E(µ1)) and t = ‖µ2−µ1‖
ε+‖µ2−µ1‖

. Then it is obvious that
E(µ3) ∈ B̄(E(µ∗), s + ε) and E(µ2) = tE(µ3) + (1− t)E(µ1). Thus,

h(E(µ2)) ≤ h(E(µ1)) + tϕ(h(E(µ3)), h(E(µ1))) ≤ h(E(µ1)) + tk.

Then, the above inequality can be written as

h(E(µ2))− h(E(µ1)) ≤ tk ≤ ‖µ2 − µ1‖
ε

k = L‖E(µ2)− E(µ3)‖,

where L = k
ε .

Moreover,
h(E(µ1))− h(E(µ2)) ≤ L‖E(µ2)− E(µ3)‖,

Then
|h(E(µ1))− h(E(µ2))‖ ≤ L‖E(µ2)− E(µ3)‖,

and since B̄(E(µ∗), s) is arbitrary, then h is continuous on Int(B).

Definition 11. A bifunction ϕ : R2 −→ R, is called sequentially upper bounded with respect to E if

sup
i

ϕ(E(ui)− E(vi)) ≤ ϕ

(
sup

i
E(ui), sup

i
E(vi)

)

for any two bounded real sequences {E(ui)}, {E(vi)}.

Remark 3. If E is an identity mapping in Definition 11, then a bifunction ϕ : R2 −→ R is called
sequentially upper bounded [32].

Proposition 2. Suppose that B ⊂ N is a geodesic E-convex set, and {hi}i∈N are a non-empty
family of geodesic ϕE-convex functions on B, where ϕE is sequentially upper bounded with respect
to E. If supi hi(u) exist for each u ∈ B, then h(u) = supi hi(u) are also geodesic ϕE-convex
functions.

Proof. Let E(u1), E(u2) ∈ B, then

h
(

γE(u1),E(u2)
(t)
)

= sup
i

hi(γE(u1),E(u2)
(t))

≤ sup
i

hi(E(u2)) + t sup
i

ϕ(hi(E(u1)), hi(E(u2)))

≤ sup
i

hi(E(u2)) + tϕ

(
sup

i
hi(E(u1)), sup

i
hi(E(u2))

)
≤ h(E(u2)) + tϕ(h(E(u1)), (E(u2))).

This implies that h is a geodesic ϕE-convex function.

Theorem 8. The function h : C −→ R is geodesic ϕE-convex, where C is a geodesic E-convex set.
The inequality ϕ(h(E(µ), h(E(µ∗)) > 0, ∀E(µ) ∈ C is necessary for h to have a local minimum at
E(µ∗) ∈ Int(C).
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Proof. Due to the fact that C is a geodesic E-convex set and E(µ∗) ∈ Int(C), then
B(E(µ∗), S) ⊂ C for some S > 0. Let E(µ) ∈ C, then

h
(

γE(µ),E(µ∗)(t)
)
≤ h(E(µ∗)) + tϕ(h(E(µ)), (E(µ∗))).

Since h attains its local minimum at E(µ∗), then

h(E(µ∗)) ≤ h
(

γE(µ),E(µ∗)(ζ)
)

, (14)

where ζ ∈ (0, 1] such that h
(

γE(µ),E(µ∗)(t)
)
∈ B(E(µ∗), S), for all t ∈ [0, ζ].

Also,

h
(

γE(µ),E(µ∗)(ζ)
)
≤ h(E(µ∗)) + ζϕ(h(E(µ)), h(E(µ∗)), (15)

then from (14) and (15), we obtain ϕ(h(E(µ)), h(E(µ∗)) > 0, for all E(µ) ∈ C.

Theorem 9. The function h : B −→ R is geodesic ϕE-convex, where B is a geodesic E-convex set
and ϕ is bounded from above on h(B)× h(B), with an upper bound K, with respect to E. Then h is
continuous on Int(B).

Proof. Assume that E(u) ∈ Int(B) and (U, ψ), is a chart containing E(u). Since ψ is a
diffeomorphism, and by using Theorems 6 and 7, we get hoψ−1 : ψ(U ∩ Int(B)) −→ R as
also geodesic ϕE-convex and then it is continuous. Hence, h = hoψ−1oψ : (U ∩ Int(B)) −→
R is continuous.

Also, since E(u) is arbitrary, then h is continuous on Int(B).

From the definition of geodesic ϕE-convex, we obtain the following proposition.

Proposition 3. Assume that
{

ϕi : i ∈ N
}

is a collection of bifunctions, such that h : B −→ R
is a geodesic ϕi

E-convex function for each i. If ϕi −→ ϕ as i −→ ∞, then h is also a geodesic
ϕE-convex function.

As a special case in the above proposition, we have the following proposition.

Proposition 4. Assume that
{

ϕi : i ∈ N
}

is a collection of bifunctions, such that h : B −→ R
is a geodesic ϕ∗E-convex function, where ϕ∗E = ∑i

l=1 ϕl
E. If ϕ∗E converges to ϕE, then h is also a

geodesic ϕE-convex function.

Theorem 10. Consider h : B −→ R to be strictly geodesic ϕE-convex, where B is a geodesic
E-convex set, ϕ is an antisymmetric function with respect to E γ̇ and stands for the derivative of γ
with respect t. Then

dhE(µ1)
γ̇E(µ1),E(µ2)

6= dhE(µ2)
γ̇E(µ1),E(µ2)

,

for all E(µ1), E(µ2) ∈ B and E(µ1) 6= E(µ2).

Proof. Since γE(µ2),E(µ1)
(t) = γE(µ1),E(µ2)

(1− t), ∀t ∈ [0, 1], then

dhE(µ2)
γ̇E(µ2),E(µ1)

= −dhE(µ2)
γ̇E(µ1),E(µ2)

.

By contradiction, let

dhE(µ1)
γ̇E(µ1),E(µ2)

= dhE(µ2)
γ̇E(µ1),E(µ2)

,
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but if h is a geodesic ϕE-convex function, then

dhE(µ1)
γ̇E(µ1),E(µ2)

< ϕ(h(E(µ1)), h(E(µ2)). (16)

Also,
dhE(µ2)

γ̇E(µ2),E(µ1)
< ϕ(h(E(µ2)), h(E(µ1)).

On the other hand,

dhE(µ2)
γ̇E(µ2),E(µ1)

= −dhE(µ2)
γ̇E(µ1),E(µ2)

,

then

−dhE(µ2)
γ̇E(µ1),E(µ2)

< ϕ(h(E(µ2)), h(E(µ1)). (17)

Moreover, since ϕ is an antisymmetry function, then (17) becomes

dhE(µ2)
γ̇E(µ1),E(µ2)

> ϕ(h(E(µ1)), h(E(µ2)),

hence,
dhE(µ1)

γ̇E(µ1),E(µ2)
> ϕ(h(E(µ1)), h(E(µ2)). (18)

From (16) and (18), we obtain a contradiction, then dhE(µ1)
γ̇E(µ1),E(µ2)

6= dhE(µ2)

γ̇E(µ1),E(µ2)
.

5. ϕE-Epigraphs

In this section, ϕE-epigraphs are introduced on complete Riemannian manifolds, and a
characterization of geodesic ϕE-convex functions in terms of their ϕE-epigraphs is obtained.

Definition 12. A set B ⊂ N ×R is called a geodesic ϕE-convex set if(
γE(u1),E(u2)

(t), v2 + tϕ(v1, v2)
)
∈ B,

for all (ui, vi) ∈ B, t ∈ [0, 1].

Therefore, a ϕE- epigraph of function h is defined by

epiϕE(h) = {(u, v) ∈ E(N)×R : h(u) ≤ v}.

Theorem 11. Consider B ⊂ N to be a geodesic E-convex set, and ϕ is non-decreasing. The set
epiϕE(h) is geodesic ϕE-convex, if and only if h : B −→ R is a geodesic ϕE-convex function.

Proof. Let u1, u2 ∈ B and t ∈ [0, 1], and since B is an E-convex set, then E(u1), E(u2) ∈
E(B) ⊆ B. Hence, (

(E(u1), h(E(u1))), (E(u2), h(E(u2)))

)
∈ epiϕE(h).

Due to the fact that epiϕE(h) is a geodesic ϕE-convex set, then(
γE(u1),E(u2)

(t), h(E(u2)) + tϕ(h(E(u1)), h(E(u2)))
)
∈ epiϕE(h).

This implies that h
(

γE(u1),E(u2)
(t)
)
≤ h(E(u2)) + tϕ(h(E(u1)), h(E(u2))). Conse-

quently, h is a geodesic ϕE-convex function.
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Now, let us consider that (u∗1 , v1), (u∗2 , v2) ∈ epiϕE(h), then u∗1 , u∗1 ∈ E(B), which
means that there are u1, u2 ∈ B such that E(u1) = u∗1 and E(u2) = u∗2 . Hence, h(E(u1)) ≤
v1, h(E(u2)) ≤ v2 and, since h is a geodesic ϕE-convex function, then

h
(

γE(u1),E(u2)
(t)
)
≤ h(E(u2)) + tϕ(h(E(u1)), h(E(u2)))

≤ v2 + tϕ(v1, v2),

which implies that
(

γE(u1),E(u2)
(t), v2 + tϕ(v1, v2)

)
∈ epiϕE(h), for all t ∈ [0, 1].

That is, epiϕE(h) is a geodesic ϕE-convex set.

Theorem 12. Consider {Bi, i ∈ I} to be a family of geodesic ϕE-convex sets, then B = ∩i∈I Bi is
also a geodesic ϕE-convex set.

Proof. Let (µ1, ν1), (µ2, ν2) ∈ ∩i∈I Bi, then (µ1, ν1), (µ2, ν2) ∈ Bi, for all i ∈ I. Hence,(
γE(µ1),E(µ2)

(t), ν2 + tϕ(ν1, ν2)
)
∈ Bi

Then, (
γE(µ1),E(µ2)

(t), ν2 + tϕ(ν1, ν2)
)
∈ ∩i∈I Bi

for all t ∈ [0, 1].
This implies ∩i∈I Bi is a geodesic ϕE-convex function.

By using the above theorem, we can obtain the following corollary

Corollary 1. Let {hi, i ∈ I} be a family of geodesic ϕE-convex functions defined on a geodesic
E-convex set B ⊂ N, which is bounded above, and ϕ is non-decreasing. If the E-epigraphs epiϕE(hi)
are geodesic ϕE-convex sets, then h = supi∈I hi is also a geodesic ϕE-convex function on B.

6. Conclusions

Some important properties of geodesic ϕE-convex functions are established in this
study. A new class of function on Riemannian manifold—together with its properties—is
also studied here. We also reported how the characterization of the geodesic ϕE-convex
function can be obtained through their ϕE-epigraph counterparts. The results presented
in this paper can be used for future research on the Riemannian manifold. The ideas and
techniques of this paper may motivate further research, for example, in fractional manifolds.
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