Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = styrene phosphonic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 21950 KiB  
Article
Unravelling the Flotation Performance of 1-Hydroxy-2-naphthyl hydroxamic Acid and Styrene Phosphonic Acid Collectors on Monazite Using Experiments and DFT Calculations
by Weiwei Wang, Zhengyao Li, Weiyao Zhu, Shaochun Hou and Chunlei Guo
Molecules 2024, 29(5), 1052; https://doi.org/10.3390/molecules29051052 - 28 Feb 2024
Viewed by 1238
Abstract
The atomic-level structure and electronic properties of monazite were investigated using a first-principles method based on density functional theory (DFT). First, the geometric structure of monazite was optimized, followed by calculations of its Mulliken population, electron density, and density of states, which were [...] Read more.
The atomic-level structure and electronic properties of monazite were investigated using a first-principles method based on density functional theory (DFT). First, the geometric structure of monazite was optimized, followed by calculations of its Mulliken population, electron density, and density of states, which were subsequently analyzed. The findings of this analysis suggest that monazite is highly susceptible to cleavage along the {100} plane during crushing and grinding. When SPA was utilized as the collector, the recovery rate of monazite was higher than that when LF-P8 was used. The zeta potential and adsorption energy results indicated that the zeta potential after SPA adsorption tended towards negativity, and the adsorption energy was smaller, indicating that SPA exhibited stronger adsorption performance. LF-P8 was stably adsorbed on the monazite (100) surface via mononuclear double coordination. SPA was stably adsorbed on the surface of monazite (100) via binuclear double coordination. The results of this study provide valuable insights into the adsorption of monazite by commonly used flotation collectors. These findings are of substantial importance for future endeavors in designing flotation collectors capable of achieving selective monazite flotation. Full article
Show Figures

Figure 1

13 pages, 4261 KiB  
Article
β-Phosphonated Glycine Pendant Groups Grafted on Styrene-6.7% Divinylbenzene Copolymers: Synthesis and Their Application as Photocatalysts
by Adriana Popa, Laura Cocheci, Lavinia Lupa, Aniela Pop and Aurelia Visa
Appl. Sci. 2023, 13(3), 2025; https://doi.org/10.3390/app13032025 - 3 Feb 2023
Cited by 3 | Viewed by 2207
Abstract
Environmental pollution from organic contaminants caused by textile dyeing is a real danger. Wastewater from the textile industry has high organic loads, as well as dyes and chemical compounds used in their preparation. Among the azo dyes, Congo red (CR) dye is widely [...] Read more.
Environmental pollution from organic contaminants caused by textile dyeing is a real danger. Wastewater from the textile industry has high organic loads, as well as dyes and chemical compounds used in their preparation. Among the azo dyes, Congo red (CR) dye is widely used as a model in the experimental studies of textile wastewater treatment. Heterogeneous photocatalysis consists of UV or VIS light irradiation of various types of organic compounds in water in the presence of a solid catalyst; it is considered an important technique for the purification and reuse of aqueous effluents. In the present study, two novel compounds of β-phosphonate-type glycine pendant groups grafted on S-DVB copolymer were used for the decontamination of Congo red dye polluted water. They were characterized by FTIR spectroscopy, scanning electron microscopy, EDX spectroscopy, thermogravimetric analysis and UV-VIS spectroscopy. By using 25 mg/L initial concentration of Congo red dye and a catalyst concentration of 1 g/L and 240 min of irradiation, a photocatalysis efficiency of 98.6% in the case of [(diethyl)(phosphono)methylene]glycine pendant groups grafted on styrene-6.7% divinylbenzene copolymer (EthylAmAcid material), and of 83.1% in the case of [(dibenzyl)(phosphono)methylene]glycine pendant groups grafted on styrene-6.7% divinylbenzene copolymer (BenzylAmAcid material), respectively, was achieved. Full article
(This article belongs to the Special Issue New Trends in Functional and Multifunctional Advanced Materials)
Show Figures

Figure 1

18 pages, 13113 KiB  
Article
Gaseous- and Condensed-Phase Activities of Some Reactive P- and N-Containing Fire Retardants in Polystyrenes
by Svetlana Tretsiakova-McNally, Aloshy Baby, Paul Joseph, Doris Pospiech, Eileen Schierz, Albena Lederer, Malavika Arun and Gaëlle Fontaine
Molecules 2023, 28(1), 278; https://doi.org/10.3390/molecules28010278 - 29 Dec 2022
Cited by 5 | Viewed by 2845
Abstract
Polystyrene (PS) was modified by covalently binding P-, P-N- and/or N- containing fire-retardant moieties through co- or ter-polymerization reactions of styrene with diethyl(acryloyloxymethyl)phosphonate (DEAMP), diethyl-p-vinylbenzyl phosphonate (DEpVBP), acrylic acid-2-[(diethoxyphosphoryl)methylamino]ethyl ester (ADEPMAE) and maleimide (MI). In the present study, the condensed-phase and [...] Read more.
Polystyrene (PS) was modified by covalently binding P-, P-N- and/or N- containing fire-retardant moieties through co- or ter-polymerization reactions of styrene with diethyl(acryloyloxymethyl)phosphonate (DEAMP), diethyl-p-vinylbenzyl phosphonate (DEpVBP), acrylic acid-2-[(diethoxyphosphoryl)methylamino]ethyl ester (ADEPMAE) and maleimide (MI). In the present study, the condensed-phase and the gaseous-phase activities of the abovementioned fire retardants within the prepared co- and ter-polymers were evaluated for the first time. Pyrolysis–Gas Chromatography/Mass Spectrometry was employed to identify the volatile products formed during the thermal decomposition of the modified polymers. Benzaldehyde, α-methylstyrene, acetophenone, triethyl phosphate and styrene (monomer, dimer and trimer) were detected in the gaseous phase following the thermal cracking of fire-retardant groups and through main chain scissions. In the case of PS modified with ADEPMAE, the evolution of pyrolysis gases was suppressed by possible inhibitory actions of triethyl phosphate in the gaseous phase. The reactive modification of PS by simultaneously incorporating P- (DEAMP or DEpVBP) and N- (MI) monomeric units, in the chains of ter-polymers, resulted in a predominantly condensed-phase mode of action owing to synergistic P and N interactions. The solid-state 31P NMR spectroscopy, Scanning Electron Microscopy/Energy Dispersive Spectroscopy, Inductively-Coupled Plasma/Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy of char residues, obtained from ter-polymers, confirmed the retention of the phosphorus species in their structures. Full article
(This article belongs to the Special Issue Feature Papers in Materials Chemistry)
Show Figures

Graphical abstract

23 pages, 6057 KiB  
Review
Denitrative Cross-Couplings of Nitrostyrenes
by Michaela Marčeková, Branislav Ferko, Katarína Ráchel Detková and Pavol Jakubec
Molecules 2020, 25(15), 3390; https://doi.org/10.3390/molecules25153390 - 27 Jul 2020
Cited by 18 | Viewed by 4974
Abstract
Interestingly, β-nitrostyrenes, typically bench stable compounds, are highly promising cross-coupling partners, due to their excellent availability and well understood reactivity. In this review, we report on the discovery and advancements, in the field of stereoselective, denitrative cross-couplings of β-nitrostyrenes with miscellaneous organic reagents. [...] Read more.
Interestingly, β-nitrostyrenes, typically bench stable compounds, are highly promising cross-coupling partners, due to their excellent availability and well understood reactivity. In this review, we report on the discovery and advancements, in the field of stereoselective, denitrative cross-couplings of β-nitrostyrenes with miscellaneous organic reagents. The rapidly expanding field offers alternative access to a broad range of functionalized alkenes, including β-alkylated styrenes, chalcones, stilbenes, cinnamic acids, and conjugated sulfones and phosphonates. The most important mechanistic pathways are briefly discussed, to familiarize readers with the elementary reactions occurring during the coupling. Full article
(This article belongs to the Special Issue Advances in Stereoselective Synthesis)
Show Figures

Graphical abstract

12 pages, 3487 KiB  
Article
Synthesis of Sulfonic Acid-Functionalized Zirconium Poly(Styrene-Phenylvinyl-Phosphonate)-Phosphate for Heterogeneous Epoxidation of Soybean Oil
by Xiaochuan Zou, Xuyuan Nie, Zhiwen Tan, Kaiyun Shi, Cun Wang, Yue Wang and Xin Zhao
Catalysts 2019, 9(9), 710; https://doi.org/10.3390/catal9090710 - 24 Aug 2019
Cited by 12 | Viewed by 3043
Abstract
In this paper, a solid acid catalyst (ZPS–PVPA–SO3H) was prepared by anchoring thiol group on zirconium poly(styrene-phenylvinyl-phosphonate)-phosphate (ZPS–PVPA), followed by oxidation of thiol groups to obtain sulfonic acid groups. The solid acid catalyst was characterized by XPS, X-ray, EDS, SEM, and [...] Read more.
In this paper, a solid acid catalyst (ZPS–PVPA–SO3H) was prepared by anchoring thiol group on zirconium poly(styrene-phenylvinyl-phosphonate)-phosphate (ZPS–PVPA), followed by oxidation of thiol groups to obtain sulfonic acid groups. The solid acid catalyst was characterized by XPS, X-ray, EDS, SEM, and TG-DSC. The successful preparation of sulfonic acid-functionalized ZPS–PVPA was confirmed. Subsequently, the catalytic performance of ZPS–PVPA–SO3H was investigated in the epoxidation of soybean oil. The results demonstrated that ZPS–PVPA–SO3H can effectively catalyze epoxidation of soybean oil with TBHP as an oxidant. Moreover, there was no significant decrease in catalytic activity after 5 repeated uses of the ZPS–PVPA–SO3H. Interestingly, the ZPS–PVPA–SO3H was kept in 2 mol/L of HCl overnight after the end of the seventh reaction, and the catalytic activity was gradually restored during the eighth to tenth cycles. Full article
Show Figures

Figure 1

13 pages, 9739 KiB  
Article
In Situ Investigation of the Adsorption of Styrene Phosphonic Acid on Cassiterite (110) Surface by Molecular Modeling
by Guichen Gong, Yuexin Han, Jie Liu, Yimin Zhu, Yanfeng Li and Shuai Yuan
Minerals 2017, 7(10), 181; https://doi.org/10.3390/min7100181 - 27 Sep 2017
Cited by 22 | Viewed by 4711
Abstract
Abstract: The flotation, adsorption and bonding mechanisms of styrene phosphonic acid (SPA) to cassiterite were studied using microflotation tests, zeta potential measurements, solution chemistry analysis and density functional theory (DFT) calculations in this paper. Flotation results demonstrated SPA was an excellent collector [...] Read more.
Abstract: The flotation, adsorption and bonding mechanisms of styrene phosphonic acid (SPA) to cassiterite were studied using microflotation tests, zeta potential measurements, solution chemistry analysis and density functional theory (DFT) calculations in this paper. Flotation results demonstrated SPA was an excellent collector for cassiterite which could recover over 85% cassiterite particles with the pH range 4.3–6.06 and 40 mg/L SPA. Zeta potential measurements and solution chemistry analysis revealed the adsorption of SPA was mainly contributed by the chemisorption of the monoanions on cassiterite surfaces. Frontier molecular orbital theory analysis and adsorption energy calculation results proved the monoanion of SPA was able to replace the OH on cassiterite surfaces. The adsorption structure optimization results confirmed the binuclear complex was the most favorable adsorption configuration of SPA on cassiterite (110) surface. Mulliken population calculations and density of states analysis indicated during the bonding process the Sn3 atom lost electrons to O3 atom, and the bonding interaction between O3 and Sn3 atoms was mainly from the contribution of the 2p orbital of O3 atom and the 5s and 5p orbitals of Sn3 atom. Full article
(This article belongs to the Special Issue Molecular Simulation of Mineral-Solution Interfaces)
Show Figures

Figure 1

15 pages, 793 KiB  
Article
Pyrolysis Combustion Flow Calorimetry Studies on Some Reactively Modified Polymers
by Svetlana Tretsiakova-McNally and Paul Joseph
Polymers 2015, 7(3), 453-467; https://doi.org/10.3390/polym7030453 - 2 Mar 2015
Cited by 30 | Viewed by 9241
Abstract
As a part of our continuing work to improve the flame retardance of some chain-growth polymers, by employing a reactive route, we have synthesized several unsaturated compounds containing either phosphorus (P), or both phosphorus (P) and nitrogen (N), bearing groups in different chemical [...] Read more.
As a part of our continuing work to improve the flame retardance of some chain-growth polymers, by employing a reactive route, we have synthesized several unsaturated compounds containing either phosphorus (P), or both phosphorus (P) and nitrogen (N), bearing groups in different chemical environments. They included: diethyl(acryloyloxymethyl)phosphonate (DEAMP); diethyl(1-acryloyloxyethyl)phosphonate (DE1AEP); diethyl-2-(acryloyloxy)ethyl phosphate (DEAEP); diethyl-2-(metharyloyloxy)ethyl phosphate (DEMEP); acrylic acid-2-(diethoxyphosphorylamino)ethyl ester (ADEPAE); acrylic acid-2-[(diethoxyphosphoryl)methyl amino]ethyl ester (ADEPMAE). Acrylonitrile (AN), methyl methacrylate (MMA) and styrene (S) were free radically copolymerised with the above mentioned comonomers. The recovered polymers were subjected to routine spectroscopic and thermo-gravimetric analyses. In addition, the combustion behaviours of homopolymers as well as the copolymers containing nominal loadings of P-, or P/N-, groups were, primarily, evaluated using pyrolysis combustion flow calorimetry (PCFC). PCFC has been found to be a very useful screening technique, especially, in establishing the efficacies of the different modifying groups towards flame retarding some base polymeric materials. Values of the heat release capacity (HRC) values normalised to the P contents (wt%) can be considered as useful tool in ranking the various P-containing modifying groups in terms of their efficacies to flame-retard non-halogenated chain-growth polymers considered in the present work. Full article
(This article belongs to the Special Issue Advances in Flame Retardant Polymers)
Show Figures

Graphical abstract

Back to TopTop