Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = strong sky scene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 13207 KiB  
Article
Dual-Structure Elements Morphological Filtering and Local Z-Score Normalization for Infrared Small Target Detection against Heavy Clouds
by Lingbing Peng, Zhi Lu, Tao Lei and Ping Jiang
Remote Sens. 2024, 16(13), 2343; https://doi.org/10.3390/rs16132343 - 27 Jun 2024
Cited by 13 | Viewed by 1595
Abstract
Infrared (IR) small target detection in sky scenes is crucial for aerospace, border security, and atmospheric monitoring. Most current works are typically designed for generalized IR scenes, which may not be optimal for the specific scenario of sky backgrounds, particularly for detecting small [...] Read more.
Infrared (IR) small target detection in sky scenes is crucial for aerospace, border security, and atmospheric monitoring. Most current works are typically designed for generalized IR scenes, which may not be optimal for the specific scenario of sky backgrounds, particularly for detecting small and dim targets at long ranges. In these scenarios, the presence of heavy clouds usually causes significant false alarms due to factors such as strong edges, streaks, large undulations, and isolated floating clouds. To address these challenges, we propose an infrared dim and small target detection algorithm based on morphological filtering with dual-structure elements. First, we design directional dual-structure element morphological filters, which enhance the grayscale difference between the target and the background in various directions, thus highlighting the region of interest. The grayscale difference is then normalized in each direction to mitigate the interference of false alarms in complex cloud backgrounds. Second, we employ a dynamic scale awareness strategy, effectively preventing the loss of small targets near cloud edges. We enhance the target features by multiplying and fusing the local response values in all directions, which is followed by threshold segmentation to achieve target detection results. Experimental results demonstrate that our method achieves strong detection performance across various complex cloud backgrounds. Notably, it outperforms other state-of-the-art methods in detecting targets with a low signal-to-clutter ratio (MSCR ≤ 2). Furthermore, the algorithm does not rely on specific parameter settings and is suitable for parallel processing in real-time systems. Full article
(This article belongs to the Special Issue Machine Learning and Image Processing for Object Detection)
Show Figures

Figure 1

21 pages, 2659 KiB  
Article
Infrared Small Dim Target Detection Using Group Regularized Principle Component Pursuit
by Meihui Li, Yuxing Wei, Bingbing Dan, Dongxu Liu and Jianlin Zhang
Remote Sens. 2024, 16(1), 16; https://doi.org/10.3390/rs16010016 - 20 Dec 2023
Cited by 4 | Viewed by 1551
Abstract
The detection of an infrared small target faces the problems of background interference and non-obvious target features, which have yet to be efficiently solved. By employing the non-local self-correlation characteristic of the infrared images, the principle component pursuit (PCP)-based methods are demonstrated to [...] Read more.
The detection of an infrared small target faces the problems of background interference and non-obvious target features, which have yet to be efficiently solved. By employing the non-local self-correlation characteristic of the infrared images, the principle component pursuit (PCP)-based methods are demonstrated to be applicable to infrared small target detection in a complex scene. However, existing PCP-based methods heavily depend on the uniform distribution of the background pixels and are prone to generating a high number of false alarms under strong clutter situations. In this paper, we propose a group low-rank regularized principle component pursuit model (GPCP) to solve this problem. First, the local image patches are clustered into several groups that correspond to different grayscale distributions. These patch groups are regularized with a group low-rank constraint, enabling an independent recovery of different background regions. Then, GPCP model integrates the group low-rank components with a global sparse component to extract small targets from the background. Different singular value thresholds can be exploited for image groups corresponding to different brightness and grayscale variance, boosting the recovery of background clutters and also enhancing the detection of small targets. Finally, a customized optimization approach based on alternating direction method of multipliers is proposed to solve this model. We set three representative detection scenes, including the ground background, sea background and sky background for experiment analysis and model comparison. The evaluation results show the proposed model has superiority in background suppression and achieves better adaptability for different scenes compared with various state-of-the-art methods. Full article
(This article belongs to the Special Issue Remote Sensing of Target Object Detection and Identification II)
Show Figures

Figure 1

22 pages, 5933 KiB  
Article
Single-Pixel Background Modeling Algorithm for Strong Sky Scenes Based on Local Region Spatial Bases
by Biao Li, Zhiyong Xu, Jianlin Zhang and Quanyou Zhao
Sensors 2023, 23(1), 522; https://doi.org/10.3390/s23010522 - 3 Jan 2023
Cited by 1 | Viewed by 1890
Abstract
In the dim-small target detection field, background suppression is a key technique for stably extracting the target. In order to effectively suppress the background to enhance the target, this paper presents a novel background modeling algorithm, which constructs base functions for each pixel [...] Read more.
In the dim-small target detection field, background suppression is a key technique for stably extracting the target. In order to effectively suppress the background to enhance the target, this paper presents a novel background modeling algorithm, which constructs base functions for each pixel based on the local region background and models the background of each pixel, named single pixel background modeling (SPB). In SPB, the low-rank blocks of the local backgrounds are first obtained to construct the background base functions of the center pixel. Then, the background of the center pixel is optimally estimated by the background bases. Experiments demonstrate that in the case of extremely low signal-to-noise ratio (SNR < 1.5 dB) and complex motion state of targets, SPB can stably and effectively separate the target from the strongly undulant sky background. The difference image obtained via SPB background modeling has the characters: the non-target residual could be white noise, and the target is significantly enhanced. Compared with the other typical five algorithms, SPB remarkably outperforms other algorithms to detect the target of a low signal-to-noise ratio. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

15 pages, 4486 KiB  
Article
Defogging Algorithm Based on Polarization Characteristics and Atmospheric Transmission Model
by Feng Ling, Yan Zhang, Zhiguang Shi, Jinghua Zhang, Yu Zhang and Yi Zhang
Sensors 2022, 22(21), 8132; https://doi.org/10.3390/s22218132 - 24 Oct 2022
Cited by 4 | Viewed by 2158
Abstract
We propose a polarized image defogging algorithm according to the sky segmentation results and transmission map optimization. Firstly, we propose a joint sky segmentation method based on scene polarization information, gradient information and light intensity information. This method can effectively segment the sky [...] Read more.
We propose a polarized image defogging algorithm according to the sky segmentation results and transmission map optimization. Firstly, we propose a joint sky segmentation method based on scene polarization information, gradient information and light intensity information. This method can effectively segment the sky region and accurately estimate the global parameters such as atmospheric polarization degree and atmospheric light intensity at infinite distance. Then, the Gaussian filter is used to solve the light intensity map of the target, and the information of the polarization degree of the target is solved. Finally, based on the segmented sky region, a three-step transmission optimization method is proposed, which can effectively suppress the halo effect in the reconstructed image of large area sky region. Experimental results shows that defogging has a big improvement in the average gradient of the image and the grayscale standard deviation. Therefore, the proposed algorithm provides strong defogging and can improve the optical imaging quality in foggy scenes by restoring fog-free images. Full article
(This article belongs to the Special Issue Multi-Sensor Fusion for Target Detection and Tracking)
Show Figures

Figure 1

23 pages, 12172 KiB  
Article
Applications of the Advanced Radiative Transfer Modeling System (ARMS) to Characterize the Performance of Fengyun–4A/AGRI
by Fei Tang, Xiaoyong Zhuge, Mingjian Zeng, Xin Li, Peiming Dong and Yang Han
Remote Sens. 2021, 13(16), 3120; https://doi.org/10.3390/rs13163120 - 6 Aug 2021
Cited by 21 | Viewed by 2999
Abstract
This study applies the Advanced Radiative Transfer Modeling System (ARMS), which was developed to accelerate the uses of Fengyun satellite data in weather, climate, and environmental applications in China, to characterize the biases of seven infrared (IR) bands of the Advanced Geosynchronous Radiation [...] Read more.
This study applies the Advanced Radiative Transfer Modeling System (ARMS), which was developed to accelerate the uses of Fengyun satellite data in weather, climate, and environmental applications in China, to characterize the biases of seven infrared (IR) bands of the Advanced Geosynchronous Radiation Imager (AGRI) onboard the Chinese geostationary meteorological satellite, Fengyun–4A. The AGRI data are quality controlled to eliminate the observations affected by clouds and contaminated by stray lights during the mid–night from 1600 to 1800 UTC during spring and autumn. The mean biases, computed from AGRI IR observations and ARMS simulations from the National Center for Environmental Prediction (NCEP) Final analysis data (FNL) as input, are within −0.7–1.1 K (0.12–0.75 K) for all seven IR bands over the oceans (land) under clear–sky conditions. The biases show seasonal variation in spatial distributions at bands 11–13, as well as a strong dependence on scene temperatures at bands 8–14 and on satellite zenith angles at absorption bands 9, 10, and 14. The discrepancies between biases estimated using FNL and the European Center for Medium–Range Weather Forecasts Reanalysis–5 (ERA5) are also discussed. The biases from water vapor absorption bands 9 and 10, estimated using ERA5 over ocean, are smaller than those from FNL. Such discrepancies arise from the fact that the FNL data are colder (wetter) than the ERA5 in the middle troposphere (upper–troposphere). Full article
(This article belongs to the Special Issue Remote Sensing of Clouds and Precipitation at Multiple Scales)
Show Figures

Figure 1

16 pages, 2152 KiB  
Article
Radiometric Inter-Calibration between Himawari-8 AHI and S-NPP VIIRS for the Solar Reflective Bands
by Fangfang Yu and Xiangqian Wu
Remote Sens. 2016, 8(3), 165; https://doi.org/10.3390/rs8030165 - 23 Feb 2016
Cited by 60 | Viewed by 10626
Abstract
The Advanced Himawari Imager (AHI) on-board Himawari-8, which was launched on 7 October 2014, is the first geostationary instrument housed with a solar diffuser to provide accurate onboard calibrated data for the visible and near-infrared (VNIR) bands. In this study, the Ray-matching and [...] Read more.
The Advanced Himawari Imager (AHI) on-board Himawari-8, which was launched on 7 October 2014, is the first geostationary instrument housed with a solar diffuser to provide accurate onboard calibrated data for the visible and near-infrared (VNIR) bands. In this study, the Ray-matching and collocated Deep Convective Cloud (DCC) methods, both of which are based on incidently collocated homogeneous pairs between AHI and Suomi NPP (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS), are used to evaluate the calibration difference between these two instruments. While the Ray-matching method is used to examine the reflectance difference over the all-sky collocations with similar viewing and illumination geometries, the near lambertian collocated DCC pxiels are used to examine the difference for the median or high reflectance scenes. Strong linear relationships between AHI and VIIRS can be found at all the paired AHI and VIIRS bands. Results of both methods indicate that AHI radiometric calibration accuracy agrees well with VIIRS data within 5% for B1-4 and B6 at mid and high reflectance scenes, while AHI B5 is generally brighter than VIIRS by ~6%–8%. No apparent East-West viewing angle dependent calibration difference can be found at all the VNIR bands. Compared to the Ray-matching method, the collocated DCC method provides less uncertainty of inter-calibration results at near-infrared (NIR) bands. As AHI has similar optics and calibration designs to the GOES-R Advanced Baseline Imager (ABI), which is currently scheduled to launch in fall 2016, the on-orbit AHI data provides a unique opportunity to develop, test and examine the cal/val tools developed for ABI. Full article
(This article belongs to the Collection Visible Infrared Imaging Radiometers and Applications)
Show Figures

Graphical abstract

22 pages, 2130 KiB  
Article
A Novel Technique Based on the Combination of Labeled Co-Occurrence Matrix and Variogram for the Detection of Built-up Areas in High-Resolution SAR Images
by Na Li, Lorenzo Bruzzone, Zengping Chen and Fang Liu
Remote Sens. 2014, 6(5), 3857-3878; https://doi.org/10.3390/rs6053857 - 29 Apr 2014
Cited by 11 | Viewed by 7163
Abstract
Interests in synthetic aperture radar (SAR) data analysis is driven by the constantly increased spatial resolutions of the acquired images, where the geometries of scene objects can be better defined than in lower resolution data. This paper addresses the problem of the built-up [...] Read more.
Interests in synthetic aperture radar (SAR) data analysis is driven by the constantly increased spatial resolutions of the acquired images, where the geometries of scene objects can be better defined than in lower resolution data. This paper addresses the problem of the built-up areas extraction in high-resolution (HR) SAR images, which can provide a wealth of information to characterize urban environments. Strong backscattering behavior is one of the distinct characteristics of built-up areas in a SAR image. However, in practical applications, only a small portion of pixels characterizing the built-up areas appears bright. Thus, specific texture measures should be considered for identifying these areas. This paper presents a novel texture measure by combining the proposed labeled co-occurrence matrix technique with the specific spatial variability structure of the considered land-cover type in the fuzzy set theory. The spatial variability is analyzed by means of variogram, which reflects the spatial correlation or non-similarity associated with a particular terrain surface. The derived parameters from the variograms are used to establish fuzzy functions to characterize the built-up class and non built-up class, separately. The proposed technique was tested on TerraSAR-X images acquired of Nanjing (China) and Barcelona (Spain), and on a COSMO-SkyMed image acquired of Hangzhou (China). The obtained classification accuracies point out the effectiveness of the proposed technique in identifying and detecting built-up areas. Full article
Show Figures

Back to TopTop