# Defogging Algorithm Based on Polarization Characteristics and Atmospheric Transmission Model

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Atmospheric Transmission Model

## 3. Stokes Vector and Polarized Images

#### 3.1. Extraction of Scene Polarization Characteristics

#### 3.2. Joint Segmentation of Sky Region

_{a}and A

_{inf}caused by interferences in the sky region is prevented using statistics.

#### 3.3. Calculation of Polarized-Difference Image

## 4. Calculation of Air-Light Intensity Image Based on Gaussian Blur Filtering

#### Calculation of Light Intensities A and D

## 5. Estimation of Transmission Map t and Restoration of a Fog-Free Image

## 6. Experimental Analysis

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Zhou, J.; Yang, T.; Chu, W.; Zhang, W. Underwater image restoration via backscatter pixel prior and color compensation. Eng. Appl. Artif. Intell.
**2022**, 11, 104785. [Google Scholar] [CrossRef] - Zhou, J.; Zhang, D.; Zhang, W. Underwater image enhancement method via multi-feature prior fusion. Appl. Intell.
**2022**, 111, 1–23. [Google Scholar] [CrossRef] - Gao, J.; Bi, R.; Zhao, J.; Fan, Z. Global optimal reconstruction of foggy images using polarization information. Opt. Precis. Eng.
**2017**, 25, 2212–2220. [Google Scholar] - Hu, X.; Gao, X.; Wang, H. A Novel Retinex Algorithm and Its Application to Fog-degraded Image Enhancement. Sens. Transducers
**2014**, 175, 138–143. [Google Scholar] - Yang, W.; Wang, R.; Fang, S.; Zhang, X. Variable Filter Retinex Algorithm for Foggy Image Enhancement. J. Comput.-Aided Des. Comput. Graph.
**2010**, 22, 965–971. [Google Scholar] [CrossRef] - Khan, H.; Sharif, M.; Bibi, N.; Usman, M.; Haider, S.A.; Zainab, S.; Shah, J.H.; Bashir, Y.; Muhammad, N. Localization of radiance transformation for image dehazing in wavelet domain. Neurocomputing
**2020**, 381, 141–151. [Google Scholar] [CrossRef] - Khmag, A.; Al-Haddad, S.A.R.; Ramli, A.R.; Kalantar, B. Single Image Dehazing Using Second-generation Wavelet Transforms and The Mean Vector L2-norm. Vis. Comput.
**2018**, 34, 675–688. [Google Scholar] [CrossRef] - Dharejo, F.A.; Zhou, Y.; Deeba, F.; Jatoi, M.A.; Khan, M.A.; Mallah, G.A.; Ghaffar, A.; Chhattal, M.; Du, Y.; Wang, X. A deep hybrid neural network for single image dehazing via wavelet transform. Opt. Int. J. Light Electron Opt.
**2021**, 231, 166462. [Google Scholar] [CrossRef] - Kaur, H.; Majumdar, S. Image Dehazing Using Dark Chammel Prior and Fast Guided Filter in Daubechies Lifting Wavelet Transform Domain. Int. J. Comput. Inf. Eng.
**2018**, 12, 219–225. [Google Scholar] - Joy, N.; Johnson, J. Fast Image Dehazing Method Based on Homomorphism Filtering and Contrast Enhancement. Int. J. Sci. Res. Eng. Trends
**2019**, 5, 305–309. [Google Scholar] - Wu, H.; Tan, Z. An Image Dehazing Algorithm Based on Single-Scale Retinex and Homomorphic Filtering. Commun. Signal Process. Syst.
**2020**, 571, 1482–1493. [Google Scholar] - He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell.
**2011**, 33, 2341–2353. [Google Scholar] - Cai, B.; Xu, X.; Jia, K.; Qing, C.; Dao, T. Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process.
**2016**, 25, 5187–5198. [Google Scholar] [CrossRef] [Green Version] - Chen, D.; He, M.; Fan, Q.; Liao, J.; Zhang, L.; Hou, D.; Yuan, L.; Hua, G. Gated context aggregation network for image dehazing and deraining. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 7–11 January 2019; IEEE Press: Piscataway, NJ, USA, 2019; pp. 1375–1383. [Google Scholar]
- Schechner, Y.Y.; Narasimhan, S.G.; Nayar, S.K. Instant Dehazing of Images Using Polarization. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Kauai, HI, USA, 8–14 May 2001; pp. 325–332. [Google Scholar]
- Schechner, Y.Y.; Narasimhan, S.G.; Nayar, S.K. Polarization-based Vision Through Haze. Appl. Opt.
**2003**, 42, 511–525. [Google Scholar] [CrossRef] - Zhang, X.-L.; Xu, Y.; Wang, X.-Z.; Xu, L. Image fusion method based on polarization characteristics of mist. J. Xiamen Univ. Nat. Sci. Ed.
**2011**, 3, 520–524. [Google Scholar] - Zhou, W.-Z.; Fan, C.; Hu, X.-P.; He, X.-F.; Zhang, L.-l. Polarization image fusion dehazing algorithm and experiment based on multi-scale singular value Decomposition. Chin. Opt.
**2021**, 14, 298–306. [Google Scholar] [CrossRef] - Huo, Y.S. Dark Channel Prior dehazing based on Polarization. Acta Phys. Sin.
**2022**, 71, 275–283. [Google Scholar] [CrossRef] - Lakshmi, T.R.V.; Reddy, C.V.K.; Padmavathi, K.; Swaraja, K.; Meenakshi, K. Entropy based single image dehazing with refined transmission using holistic edges. Multimed. Tools Appl.
**2022**, 81, 20229–20253. [Google Scholar] [CrossRef] - Zhou, J.; Yang, T.; Zhang, W. Underwater vision enhancement technologies: A comprehensive review, challenges, and recent trends. Appl. Intell.
**2022**, 1–28. [Google Scholar] [CrossRef] - Zhou, J.; Zhang, D.; Ren, W.; Weishi, Z. Auto Color Correction of Underwater Images Utilizing Depth Information. IEEE Geosci. Remote Sens. Lett.
**2022**, 19, 1–5. [Google Scholar] [CrossRef] - Zhou, J.; Zhang, D.; Zhang, W. Classical and state-of-the-art approaches for underwater image defogging: A comprehensive survey. Front. Inf. Technol. Electron. Eng.
**2020**, 21, 1745–1770. [Google Scholar] [CrossRef] - Fang, S.; Xia, X.S.; Xing, H.; Chen, C.W. Image dehazing using polarization effects of objects and airlight. Opt. Express
**2014**, 22, 19523–19537. [Google Scholar] [CrossRef] - Zhang, J.H. Technology of Sea Clutter Suppression and Ship Target Recognition Based on Infrared Polarization Information. Master’s Thesis, National University of Defense Technology, Changsha, China, 2018. [Google Scholar]
- Jing, M.; Du, Y. Flank angle measurement based on improved Sobel operator. Manuf. Lett.
**2020**, 25, 44–49. [Google Scholar] [CrossRef] - Zhou, Y.; Fu, X. Research on the combination of improved Sobel operator and ant colony algorithm for defect detection. MATEC Web Conf.
**2021**, 336, 01009. [Google Scholar] [CrossRef] - Han, L.; Tian, Y.; Qi, Q. Research on edge detection algorithm based on improved sobel operator. MATEC Web Conf.
**2020**, 309, 03031. [Google Scholar] [CrossRef] [Green Version] - Zhang, Y.M. Research on All Stokes Polarization Imaging Technology. Ph.D. Thesis, Nanjing University of Science and Technology, Nanjing, China, 2015. [Google Scholar]
- Tarel, J.P.; Hautière, N. Fast visibility restoration from a single color or gray level image. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009. [Google Scholar]
- Zhang, X.; Zhao, W.; Zhang, W.; Peng, J.; Fan, J. Guided Filter Network for Semantic Image Segmentation. IEEE Trans. Image Process.
**2022**, 31, 2695–2709. [Google Scholar] [CrossRef] - Salazar-Colores, S.; Cruz-Aceves, I.; Ramos-Arreguin, J.-M. Single image dehazing using a multilayer perceptron. J. Electron. Imaging
**2018**, 27, 043022. [Google Scholar] [CrossRef] - Ehsan, S.M.; Imran, M.; Ullah, A.; Elbasi, E. Single Image Dehazing Technique Using the Dual Transmission Maps Strategy and Gradient-Domain Guided Image Filtering. IEEE Access
**2021**, 9, 89055–89063. [Google Scholar] [CrossRef] - Wu, L.; Zhang, X.; Chen, H.; Wang, D.; Deng, J. VP-NIQE: An Opinion-Unaware Visual Perception Natural Image Quality Evaluator. Neurocomputing
**2021**, 463, 17–28. [Google Scholar] [CrossRef]

**Figure 2.**Segmentation example of sky region, (

**a**–

**h**) show the different results of the sky segmentation under different parameters, (

**a**) th1 = 60, th2 = 60, th3 = 180, (

**b**) th1 = 70, th2 = 70, th3 = 190, (

**c**) th1 = 70, th2 = 80, th3 = 190, (

**d**) th1 = 70, th2 = 80, th3 = 200, (

**e**) th1 = 70, th2 = 90, th3 = 200, (

**f**) th1 = 70, th2 = 95, th3 = 200, (

**g**) th1 = 70, th2 = 95, th3 = 205, (

**h**) th1 = 70, th2 = 95, th3 = 215.

**Figure 3.**Result of the Gaussian blur filtering, (

**a**–

**d**) the polarized air-light images at fours angle, (

**e**–

**h**) the polarized object images at fours angles, (

**i**) the light intensity of the air-light, (

**j**) the light intensity of the object, (

**k**) DOP of the object.

**Figure 5.**The comparison between original hazy image and dehazed image, (

**a**) original hazy image, (

**b**) dehazed image.

**Figure 7.**The comparison between different methods, (

**a**) the original hazy image, (

**b**) the result of dark channel, (

**c**) the result of SIDMP, (

**d**) the result of proposed method.

**Figure 8.**The comparison of the enlarged details, (

**a**) the original image, (

**b**) the result of dark channel, (

**c**) the result of SIDMP, (

**d**) the result of proposed.

**Figure 9.**Histogram comparison results, (

**a**) result of the original hazy images, (

**b**) result of dark channel, (

**c**) result of SIDMP, (

**d**) result of proposed method.

**Figure 10.**The comparison of deferent methods, (

**a**) the original hazy image, (

**b**) the result of DTMS, (

**c**) the result of proposed method.

**Figure 11.**Histogram comparison results, (

**a**) the result of original image, (

**b**) the result of DTMS, (

**c**) the result of proposed.

**Table 1.**Quantitative evaluation of defogging algorithms in the three scenes shown in Figure 7.

Grayscale Standard Deviation | Scenario1 | Scenario2 | Scenario3 |
---|---|---|---|

Original | 37.7078 | 56.9911 | 59.3694 |

Dark channel prior | 68.4882 | 86.6204 | 84.1204 |

SIDMP | 70.3881 | 83.5740 | 91.6790 |

Proposed | 64.7314 | 77.6341 | 83.3641 |

Average Gradient | Scenario1 | Scenario2 | Scenario3 |

Original | 0.0036 | 0.0045 | 0.0080 |

Dark channel | 0.0050 | 0.0066 | 0.0084 |

SIDMP | 0.0058 | 0.0067 | 0.0115 |

Proposed | 0.0091 | 0.0096 | 0.0176 |

NIQE | Scenario4 | Scenario5 |
---|---|---|

Original | 4.8812 | 5.3302 |

DTMS | 5.1897 | 5.6805 |

Proposed | 4.3335 | 4.2907 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ling, F.; Zhang, Y.; Shi, Z.; Zhang, J.; Zhang, Y.; Zhang, Y.
Defogging Algorithm Based on Polarization Characteristics and Atmospheric Transmission Model. *Sensors* **2022**, *22*, 8132.
https://doi.org/10.3390/s22218132

**AMA Style**

Ling F, Zhang Y, Shi Z, Zhang J, Zhang Y, Zhang Y.
Defogging Algorithm Based on Polarization Characteristics and Atmospheric Transmission Model. *Sensors*. 2022; 22(21):8132.
https://doi.org/10.3390/s22218132

**Chicago/Turabian Style**

Ling, Feng, Yan Zhang, Zhiguang Shi, Jinghua Zhang, Yu Zhang, and Yi Zhang.
2022. "Defogging Algorithm Based on Polarization Characteristics and Atmospheric Transmission Model" *Sensors* 22, no. 21: 8132.
https://doi.org/10.3390/s22218132