Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = strip coal pillar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10041 KiB  
Article
Study on the Mining Effect and Optimal Design of Longwall Full Mining with Paste Partial Filling
by Yongqiang Zhou, Changxiang Wang, Changlong Liao, Jianhang Wang and Baoliang Zhang
Minerals 2024, 14(3), 264; https://doi.org/10.3390/min14030264 - 1 Mar 2024
Cited by 2 | Viewed by 1988
Abstract
Various methods of longwall full mining with partial filling have been extensively researched to satisfy the specific mining needs of pressurized-coal and residual-coal resources. This study introduces three longwall partial-filling-mining techniques: room–pillar filling mining, parallel-strip filling mining, and vertical-strip filling mining. Numerical simulations [...] Read more.
Various methods of longwall full mining with partial filling have been extensively researched to satisfy the specific mining needs of pressurized-coal and residual-coal resources. This study introduces three longwall partial-filling-mining techniques: room–pillar filling mining, parallel-strip filling mining, and vertical-strip filling mining. Numerical simulations are employed to evaluate the efficacy of these methods. The findings indicate that vertical-strip filling mining results in minimal surface deformation and a more uniform distribution of displacements. In practical operations, the effectiveness of filling largely depends on the choice of filling technology and materials. The research further includes an optimization analysis of the filling technology, emphasizing the composition of the coal-gangue-paste filling system and the refinement of its components. Additionally, the study aims to explore the optimization analysis of filling materials, specifically focusing on performance-optimization methods. The experimental results illustrate that optimizing the filling materials can enhance the performance of filling paste, improving both early-stage and long-term compressive strength. Moreover, the paper examines the quantitative characterization of paste-filling-mining subsidence at various stages in conjunction with theoretical knowledge. Subsequently, mining-subsidence-control measures are recommended to address the primary deformation factors across different stages. Through an in-depth examination of filling-method designs, enhancements in filling technology, and predictions regarding filling-mining subsidence, this research offers valuable insights for optimizing longwall partial-filling-mining methods. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

24 pages, 9825 KiB  
Article
Stability Control Technology for Surrounding Rocks in Gob-Side Entry Driving with Small Coal Pillars under Dynamic Pressure
by Shihao Guo, Shanchao Hu, Junhong Huang, Zhihao Gao, Yafei Cheng, Jinming Han and Lei Yang
Energies 2023, 16(23), 7887; https://doi.org/10.3390/en16237887 - 2 Dec 2023
Cited by 7 | Viewed by 1607
Abstract
To address the support difficulties caused by the dynamic pressure from the adjacent working face in gob-side entry driving, this study, taking the 8103 working face of the Jinhuagong Coal Mine in Shanxi Province as an example, adopted methods such as theoretical analysis, [...] Read more.
To address the support difficulties caused by the dynamic pressure from the adjacent working face in gob-side entry driving, this study, taking the 8103 working face of the Jinhuagong Coal Mine in Shanxi Province as an example, adopted methods such as theoretical analysis, physical experiments, numerical simulations, and field practices to explore roof-cutting and pressure-relieving techniques to control the surrounding rocks in gob-side entry driving with small coal pillars under dynamic pressure. Fractures of the lateral roof, stresses on the surrounding rock, and deformations with different cutting-roof parameters were analyzed to determine the reasonable parameters for applications. The following results have been obtained. The longer the lateral cantilever length of the roof, the greater the load borne by the surrounding rock. Therefore, the key to reducing the confining pressure in a roadway is reducing the lateral cantilever length of the roof. After roof cutting, the roof of the gob area collapsed more completely. The stress on both sides of the coal pillar and that on the ribs of the solid coal dropped by 7.72 MPa and 4.16 MPa, respectively. The key roof-cutting parameters were analyzed by the UDEC numerical software, and the reasonable roof-cutting angle and height were determined to be 12° and 14 m. A support scheme combining “steel strip + bolt + anchor cable + roof cutting” was proposed. With the scheme applied, the displacement of both sides of the coal pillar was 61 mm shorter than that in the non-test section, and the duration in which the roadway was affected by mining was 11 days shorter. Therefore, the rationality of the selected roof-cutting and support parameters in this study is verified. The proposed scheme can effectively control the stability of surrounding rocks in gob-side entry driving with small coal pillars under dynamic pressure. Full article
(This article belongs to the Special Issue Optimization of Coal Mining and Fossil Energy)
Show Figures

Figure 1

16 pages, 14498 KiB  
Article
Seismic Reduction Mechanism and Engineering Application of Paste Backfilling Mining in Deep Rock Burst Mines
by Jiazhuo Li, Songyue Li, Wentao Ren, Hui Liu, Shun Liu and Kangxing Yan
Sustainability 2023, 15(5), 4336; https://doi.org/10.3390/su15054336 - 28 Feb 2023
Cited by 5 | Viewed by 1784
Abstract
In the process of coal resources development, a large number of strip coal pillars have been left behind in the coal mines in central–eastern China. With the increase in coal mining depth year by year, the rock burst threat of strip coal pillars [...] Read more.
In the process of coal resources development, a large number of strip coal pillars have been left behind in the coal mines in central–eastern China. With the increase in coal mining depth year by year, the rock burst threat of strip coal pillars is becoming more and more prominent due to the influence of buried depth, geological structure, gob and other factors. Backfilling mining is the main means to recover the residual strip coal pillar. In order to investigate the effect of backfilling mining on the prevention and control of rock burst, taking the paste backfilling workface 1# of Gucheng coal mine as the engineering background, a comprehensive research method of theoretical analysis, numerical simulation and field monitoring was used to study the evolution of stress and of the overburden spatial structure of the backfilling workface under the control of the backfilled ratio. The results showed that the backfilling mining controls the movement and deformation of overburden by reducing the activity range of roof strata. The overburden fracture development height decreases with the increase in backfilled ratio, but there is a boundary effect influenced by the roof deflection before backfilling and the defective distance of roof contact. With the increase in backfilled ratio, the concentration coefficient of front abutment pressure, the vertical displacement of the roof and the development height of the plastic zone of overlying strata decreased obviously, which indicates that filling mining can effectively control the stress of surrounding rock and the movement of overlying strata. The field monitoring data showed that the influence range of the front abutment pressure of the paste backfilling workface was about 90 m and the maximum stress of the surrounding rock of the two entries did not exceed 7 MPa. The average daily frequency of microseism was 1.34, and the average daily total energy of microseism was 1.80 + 103 J, which decreased by 69% and 90%, respectively, compared with the caving method working face with similar geological conditions. The data above showed that the backfilling mining can effectively reduce the working face stress level and dynamic load strength to achieve the effect of prevention and control of rock burst. Full article
(This article belongs to the Special Issue Coal and Rock Dynamic Disaster Monitor and Prevention)
Show Figures

Figure 1

16 pages, 4593 KiB  
Article
Study on the Instability Activation Mechanism and Deformation Law of Surrounding Rock Affected by Water Immersion in Goafs
by Sihai Yi, Yu Zhang, Haiyang Yi, Xueliang Li, Xu Wang, Yun Wang and Tingxiang Chu
Water 2022, 14(20), 3250; https://doi.org/10.3390/w14203250 - 15 Oct 2022
Cited by 16 | Viewed by 2044
Abstract
Large-scale goafs are left after coal seam mining. Due to the low-lying terrain, the goaf will be filled and soaked by groundwater, which may lead to instability of the remaining coal pillars in the goaf and cause uneven settlement of the overlying rock. [...] Read more.
Large-scale goafs are left after coal seam mining. Due to the low-lying terrain, the goaf will be filled and soaked by groundwater, which may lead to instability of the remaining coal pillars in the goaf and cause uneven settlement of the overlying rock. Consequently, there may be overlying rock movement and surface subsidence, which endangers the safety of the building (structure) above the goaf. Considering the strip goaf of Dai Zhuang coal pillar as an example, this study investigated the evolution of instability and deformation of surrounding rocks affected by water immersion using the similar material simulation test method. The results of the study reveal that under the effect of prolonged water immersion in the goaf, the damage to the coal pillar in the strip underwent a stagewise evolution process of several instances of creep damage at the edge of coal pillar followed by overall destabilization damage, and the overburden movement revealed stage characteristics of small step subsidence several times followed by sudden large subsidence. Furthermore, based on Wilson’s coal pillar instability theory, the instability mechanism of the strip coal pillar under the action of water immersion was found to be triggered by the reduced strength of the coal pillar from the effect of water immersion, the continuous creep damage to the strip coal pillar from outside to inside, and the continuous shortening of the elastic zone of the coal pillar until its bearing capacity was lower than the load it was carrying. The research results are expected to serve as theoretical guidance for the study of coal pillar stability and the development and utilization of surface construction above goafs. Full article
(This article belongs to the Special Issue Stability Evaluation of Underground Water Reservoir in Deep Coal Mine)
Show Figures

Figure 1

21 pages, 6261 KiB  
Article
Research of Surrounding Rock Control of Gob-Side Entry Retaining Based on Deviatoric Stress Distribution Characteristics
by Zhiqiang Wang, Jiao Zhang, Jingkai Li, Peng Wang, Chao Wu and Lei Shi
Sustainability 2022, 14(9), 5660; https://doi.org/10.3390/su14095660 - 7 May 2022
Cited by 9 | Viewed by 2084
Abstract
In view of the difficulty of the surrounding rock control of retaining a roadway along a goaf, this paper takes the 5504 working face of the Hongshuliang Coal Mine as the engineering context. The uniaxial compressive strength and tensile strength of concrete filling [...] Read more.
In view of the difficulty of the surrounding rock control of retaining a roadway along a goaf, this paper takes the 5504 working face of the Hongshuliang Coal Mine as the engineering context. The uniaxial compressive strength and tensile strength of concrete filling material in the retained roadway are determined by laboratory tests. Through theoretical analysis, field investigation, numerical simulation and field measurement, the distribution characteristics of deviatoric stress and damage zone of the roadway surrounding rock in the mining process of the 5504 working face are studied here. Based on the failure of rock mass element caused by deviatoric stress tensors, the study shows that the thickness of the concrete wall is 2.2 m and the compressive strength of the concrete wall can reach 10.87~11.64 MPa in 3 days to 4 days, which can meet the support strength of the retained roadway. From the position of 90 m in front of the working face to the position of 100 m behind the working face, the distribution form of the roadway surrounding rock deviatoric stress is: symmetrical butterfly shape → single butterfly shape → narrow oblique strip → oblique 8 shape → wide oblique strip shape. When the distance between the retained roadway and the working face is 49 m, the retained roadway tends to be stable. Based on the distribution characteristics of the deviatoric stress outline line and the damage zone outline line of the retained roadway surrounding rock, the retained roadway surrounding rock is divided into three regions, and the combined support technology of “bolt + anchor cable + single pillar + reinforcement combined with steel plate to strengthen concrete wall” is proposed. Through field engineering practice, the maximum displacement of roof, floor, solid coal side and concrete wall side in the retained roadway is 136.6 mm, 78.8 mm, 62.3 mm and 43.3 m, respectively, and the surrounding rock control effect of the retained roadway is good. Full article
Show Figures

Figure 1

16 pages, 4464 KiB  
Article
Feasibility of Coupling PS System with Building Protection in an Ultrasoft Strata Colliery
by Song Guo, Guangli Guo, Xiangsheng Yang and Qiu Du
Sustainability 2021, 13(3), 1015; https://doi.org/10.3390/su13031015 - 20 Jan 2021
Cited by 1 | Viewed by 1801
Abstract
To guarantee the stability of a building complex above a planned mining district with ultrasoft strata, strip mining technology (SMT) was applied to control the displacement and deformation caused by underground exploitation. This study attempts to design a reasonable pillar width to establish [...] Read more.
To guarantee the stability of a building complex above a planned mining district with ultrasoft strata, strip mining technology (SMT) was applied to control the displacement and deformation caused by underground exploitation. This study attempts to design a reasonable pillar width to establish a stable pillar-support (PS) system composed of ground buildings with coal pillars underneath. Based on the stratigraphic structure of ultrasoft strata and in situ measurement data of mining subsidence monitoring, this study takes an ultrasoft strata colliery in western Henan province, central China, as an example to examine the technical and economical feasibility of the proposed PSsyst under two mining scenarios. The major results indicated that the initial design of pillar width would be 120 m under scenario 1, with expected damage of only 450 mm maximum subsidence predicted by probability integration method (PIM); while under scenario 2, the cost of compensation for buildings’ mining-induced damage would increase to CNY 61.31 million with an expected output of 7.629 million tons of raw coal. Moreover, the protection rate of the residential area in the proposed postmining area of scenario 1 can reach as much as 6.91% comparing to the fully mechanized coal winning technology in scenario 2. Overall, the proposed PSsyst will bring good benefits both economically and environmentally and should be worth promoting as a reference for similar geological and mining conditions in the future. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

16 pages, 11418 KiB  
Article
Study on the Pressure-Bearing Law of Backfilling Material Based on Three-Stage Strip Backfilling Mining
by Xiaoping Shao, Xin Li, Long Wang, Zhiyu Fang, Bingchao Zhao, Ershuai Liu, Yeqing Tao and Lang Liu
Energies 2020, 13(1), 211; https://doi.org/10.3390/en13010211 - 2 Jan 2020
Cited by 16 | Viewed by 2652
Abstract
During strip backfilling mining in coal mines, the backfilling material is the main support structure. Therefore, studying the pressure law of the backfilling material is essential for the safe and efficient mining of coal resources. Based on research into strip backfilling mining at [...] Read more.
During strip backfilling mining in coal mines, the backfilling material is the main support structure. Therefore, studying the pressure law of the backfilling material is essential for the safe and efficient mining of coal resources. Based on research into strip backfilling mining at working face number 3216 of the Shanghe Coal Mine, and to smooth transition of overlying strata loads to the backfilling material, this study proposes a three-stage strip backfilling mining method. Based on thin-plate theory, an elastic thin-plate model, a reasonable spacing of strip mining is constructed, and the reasonable mining parameters of “mining 7 m to retain 8 m” at working face number 3216 of the Shanghe Coal Mine are determined. The law of backfilling pressure in three-stage strip backfilling mining is studied through numerical simulation and physical simulation experiments. The results show that field measurement results are basically consistent with the experimental results and numerical simulation results. When three-stage strip backfilling mining is adopted, the stage-one backfilling material is the main bearing body to which the overlying rock load transfers smoothly and gradually, and the structure of the “overburden-coal pillar (or backfilling strip)” in the stope remains stable. In three-stage strip backfilling mining, the overlying rock load is ultimately transferred to the stage-one backfilling material, the stage-two backfilling material is the auxiliary bearing body, and the stage-three backfilling material mainly provides long-term stable lateral support for the stage-one backfilling material. Full article
Show Figures

Graphical abstract

12 pages, 2666 KiB  
Article
Mine Size Effects on Coal Pillar Stress and Their Application for Partial Extraction
by Yang Yu, Ka-Zhong Deng and Shen-En Chen
Sustainability 2018, 10(3), 792; https://doi.org/10.3390/su10030792 - 13 Mar 2018
Cited by 24 | Viewed by 4106
Abstract
Coal is a nonrenewable resource. Hence, it is important to improve the coal recovery ratio and ensure the stability of coal mines for sustainable development of mining cities. Partial extraction techniques, such as strip pillar mining or room-and-pillar mining, are efficient methods to [...] Read more.
Coal is a nonrenewable resource. Hence, it is important to improve the coal recovery ratio and ensure the stability of coal mines for sustainable development of mining cities. Partial extraction techniques, such as strip pillar mining or room-and-pillar mining, are efficient methods to extract coal. Pillar stress is a critical property for pillar design and for the assessment of mine stability after partial extraction. Current pillar stress calculation methods can sometimes overestimate the pillar stress and unnecessarily large coal pillars may be left underground, which leads to a waste of coal resources. In this paper, the size effects of mining activity on the maximum vertical pillar stress were investigated using numerical simulations. Both strip pillar mining and room-and-pillar mining were considered as possible mining scenarios at different mining depths. The results show that the maximum pillar stress of a mine is primarily controlled by four factors: the mine size to mining depth ratio, the mining width to pillar width ratio, the overburden elastic modulus, and the mining depth. The maximum pillar stress of a mine gradually increases to an ultimate value as the mine size increases. Simplified formulas and methodology have been derived for stress calculations under consideration of mine size effects and, therefore, can reduce the waste of coal resources from the overestimation of pillar stress. Full article
Show Figures

Figure 1

16 pages, 4031 KiB  
Article
Wide Strip Backfill Mining for Surface Subsidence Control and Its Application in Critical Mining Conditions of a Coal Mine
by Wenhao Cao, Xufeng Wang, Peng Li, Dongsheng Zhang, Chundong Sun and Dongdong Qin
Sustainability 2018, 10(3), 700; https://doi.org/10.3390/su10030700 - 5 Mar 2018
Cited by 32 | Viewed by 5367
Abstract
Critical mining under buildings, railways, and water bodies (BRW) brings the contradiction between high recovery rate and minor environmental hazards. To lessen this contradiction, an innovative mining method referred to as “wide strip backfill mining” (WSBM) was proposed in this study. A Winkler [...] Read more.
Critical mining under buildings, railways, and water bodies (BRW) brings the contradiction between high recovery rate and minor environmental hazards. To lessen this contradiction, an innovative mining method referred to as “wide strip backfill mining” (WSBM) was proposed in this study. A Winkler beam model is applied to the primary key strata (PKS), and the study revealed a surface subsidence control mechanism and designed the technical parameters of the method. The respective numerical simulations suggested the feasibility of the proposed method and the main influencing factors on surface subsidence can be ranked in descending order as wide filling strip width (WFSW), filling ratio, and pillar width. Meanwhile, a drop in the WFSW from 96 m to 72 m brought out the surface subsidence reduction by 44.5%. By using the super-high water content filling material, the proposed method was applied in the Taoyi coal mine under critical mining conditions. The resulting surface subsidence and deformations met the safety requirements for building protection level 1, and the recovery rate reached 75.9%. Moreover, the application of the method achieved significant technical and economic benefits. The research can provide a theoretical and experimental substantiation for critical mining under BRW. Full article
Show Figures

Figure 1

21 pages, 3461 KiB  
Review
Subsidence Mechanism and Stability Assessment Methods for Partial Extraction Mines for Sustainable Development of Mining Cities—A Review
by Yang Yu, Shen-En Chen, Ka-Zhong Deng, Peng Wang and Hong-Dong Fan
Sustainability 2018, 10(1), 113; https://doi.org/10.3390/su10010113 - 6 Jan 2018
Cited by 40 | Viewed by 6135
Abstract
Partial extraction methods such as underground strip pillar mining or room-and-pillar mining are widely adopted techniques to control ground subsidence. However, pillar failure in partial extraction mines may introduce violent secondary ground collapses. The stability of partial extraction mines dictates the safety of [...] Read more.
Partial extraction methods such as underground strip pillar mining or room-and-pillar mining are widely adopted techniques to control ground subsidence. However, pillar failure in partial extraction mines may introduce violent secondary ground collapses. The stability of partial extraction mines dictates the safety of ground surface structures and the environmental health state of the surrounding mining areas. To reuse mining subsidence lands, it is necessary to evaluate the stability of the land through mine subsidence assessments. This paper summarizes current pillar stability assessment methods and their limitations, and the rock mechanics associated with the stability of abandoned mines. The effects of multiple factors that affect mine stability are discussed in detail; special attention has been extended to discuss the weathering effects associated with infused water and spontaneous combustion, as these are some key reasons for pillar strength degradation in abandoned mines. The mechanism of mine collapse and the corresponding post-mining disasters are also summarized. Finally, suggestions and strategies to improve current mine stability assessment methods are proposed based on the perspective of subsidence control. Full article
Show Figures

Figure 1

Back to TopTop