Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = stratifin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2918 KiB  
Article
Putative Biomarkers for Prognosis, Epithelial-to-Mesenchymal Transition, and Drug Response in Cell Lines Representing Oral Squamous Cell Carcinoma Progression
by Mohamad Z. Hamoui, Shuaa Rizvi, Hilal Arnouk and Cai M. Roberts
Genes 2025, 16(2), 209; https://doi.org/10.3390/genes16020209 - 9 Feb 2025
Cited by 1 | Viewed by 1581
Abstract
Background/Objectives: Oral squamous cell carcinoma (OSCC) is the most common form of head and neck cancer and accounts for over 50,000 new cancer cases annually in the United States. The survival rates are markedly different for localized OSCC versus metastatic disease, for which [...] Read more.
Background/Objectives: Oral squamous cell carcinoma (OSCC) is the most common form of head and neck cancer and accounts for over 50,000 new cancer cases annually in the United States. The survival rates are markedly different for localized OSCC versus metastatic disease, for which the five-year survival rate is only 39%. Depending on its pathology and stage at diagnosis, the treatment may involve surgery, radiation, targeted therapy, or conventional chemotherapy. However, there is an unmet need for reliable biomarkers to predict the treatment response or link therapeutic efficacy to tumor progression. We sought to assemble a panel of OSCC tumor progression biomarkers that correlated with the epithelial-to-mesenchymal transition (EMT) and the response to cytotoxic drugs. Methods: We used four cell lines that represented the stepwise progression from normal oral mucosa to dysplastic, invasive, and metastatic OSCC lesions and performed a quantitative analysis via Western blot for putative markers. EMT phenotypes were assessed using wound healing migration assays. Live cell imaging was used to assess drug effectiveness over time. Results: The expression of stratifin, a tumor suppressor gene, is inversely correlated with both tumor progression steps and the expression of the EMT marker N-cadherin. Conversely, the E-cadherin and fibronectin expression was markedly decreased in the advanced-stage OSCC lines. In addition, metastatic Detroit 562 cells exhibited resistance to cell death following docetaxel treatment and showed clear migratory behavior. Conclusions: We describe a molecular signature of advanced and drug-resistant OSCC tumors which encompasses multiple markers, warranting further investigation to establish their utility in predicting clinical outcomes and guiding the treatment options for patients afflicted with oral cancer. Full article
Show Figures

Figure 1

20 pages, 3546 KiB  
Article
Saliva Proteome, Metabolome and Microbiome Signatures for Detection of Alzheimer’s Disease
by Maxime François, Dana Pascovici, Yanan Wang, Toan Vu, Jian-Wei Liu, David Beale, Maryam Hor, Jane Hecker, Jeff Faunt, John Maddison, Sally Johns and Wayne Leifert
Metabolites 2024, 14(12), 714; https://doi.org/10.3390/metabo14120714 - 19 Dec 2024
Cited by 2 | Viewed by 1639
Abstract
Background: As the burden of Alzheimer’s disease (AD) escalates with an ageing population, the demand for early and accessible diagnostic methods becomes increasingly urgent. Saliva, with its non-invasive and cost-effective nature, presents a promising alternative to cerebrospinal fluid and plasma for biomarker discovery. [...] Read more.
Background: As the burden of Alzheimer’s disease (AD) escalates with an ageing population, the demand for early and accessible diagnostic methods becomes increasingly urgent. Saliva, with its non-invasive and cost-effective nature, presents a promising alternative to cerebrospinal fluid and plasma for biomarker discovery. Methods: In this study, we conducted a comprehensive multi-omics analysis of saliva samples (n = 20 mild cognitive impairment (MCI), n = 20 Alzheimer’s disease and age- and n = 40 gender-matched cognitively normal individuals), from the South Australian Neurodegenerative Disease (SAND) cohort, integrating proteomics, metabolomics, and microbiome data with plasma measurements, including pTau181. Results: Among the most promising findings, the protein Stratifin emerged as a top candidate, showing a strong negative correlation with plasma pTau181 (r = −0.49, p < 0.001) and achieving an AUC of 0.95 in distinguishing AD and MCI combined from controls. In the metabolomics analysis, 3-chlorotyrosine and L-tyrosine exhibited high correlations with disease severity progression, with AUCs of 0.93 and 0.96, respectively. Pathway analysis revealed significant alterations in vitamin B12 metabolism, with Transcobalamin-1 levels decreasing in saliva as AD progressed despite an increase in serum vitamin B12 levels (p = 0.008). Microbiome analysis identified shifts in bacterial composition, with a microbiome cluster containing species such as Lautropia mirabilis showing a significant decrease in abundance in MCI and AD samples. The overall findings were reinforced by weighted correlation network analysis, which identified key hubs and enriched pathways associated with AD. Conclusions: Collectively, these data highlight the potential of saliva as a powerful medium for early AD diagnosis, offering a practical solution for large-scale screening and monitoring. Full article
(This article belongs to the Special Issue Cellular Metabolism in Neurological Disorders)
Show Figures

Graphical abstract

19 pages, 9983 KiB  
Article
Prognostic Function and Immunologic Landscape of a Predictive Model Based on Five Senescence-Related Genes in IPF Bronchoalveolar Lavage Fluid
by Cheng Zhong, Yuqiong Lei, Jingyuan Zhang, Qi Zheng, Zeyu Liu, Yongle Xu, Shan Shan and Tao Ren
Biomedicines 2024, 12(6), 1246; https://doi.org/10.3390/biomedicines12061246 - 3 Jun 2024
Cited by 1 | Viewed by 1490
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung disease characterized by unknown causes and a poor prognosis. Recent research indicates that age-related mechanisms, such as cellular senescence, may play a role in the development of this condition. However, the relationship [...] Read more.
Background: Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung disease characterized by unknown causes and a poor prognosis. Recent research indicates that age-related mechanisms, such as cellular senescence, may play a role in the development of this condition. However, the relationship between cellular senescence and clinical outcomes in IPF remains uncertain. Methods: Data from the GSE70867 database were meticulously analyzed in this study. The research employed differential expression analysis, as well as univariate and multivariate Cox regression analysis, to pinpoint senescence-related genes (SRGs) linked to prognosis and construct a prognostic risk model. The model’s clinical relevance and its connection to potential biological processes were systematically assessed in training and testing datasets. Additionally, the expression location of prognosis-related SRGs was identified through immunohistochemical staining, and the correlation between SRGs and immune cell infiltration was deduced using the GSE28221 dataset. Result: The prognostic risk model was constructed based on five SRGs (cellular communication network factor 1, CYR61, stratifin, SFN, megakaryocyte-associated tyrosine kinase, MATK, C-X-C motif chemokine ligand 1, CXCL1, LIM domain, and actin binding 1, LIMA1). Both Kaplan-Meier (KM) curves (p = 0.005) and time-dependent receiver operating characteristic (ROC) analysis affirmed the predictive accuracy of this model in testing datasets, with respective areas under the ROC curve at 1-, 2-, and 3-years being 0.721, 0.802, and 0.739. Furthermore, qRT-RCR analysis and immunohistochemical staining verify the differential expression of SRGs in IPF samples and controls. Moreover, patients in the high-risk group contained higher infiltration levels of neutrophils, eosinophils, and M1 macrophages in BALF, which appeared to be independent indicators of poor prognosis in IPF patients. Conclusion: Our research reveals the effectiveness of the 5 SRGs model in BALF for risk stratification and prognosis prediction in IPF patients, providing new insights into the immune infiltration of IPF progression. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

16 pages, 1431 KiB  
Article
NSD1 Mutations in Sotos Syndrome Induce Differential Expression of Long Noncoding RNAs, miR646 and Genes Controlling the G2/M Checkpoint
by Giuseppina Conteduca, Davide Cangelosi, Simona Coco, Michela Malacarne, Chiara Baldo, Alessia Arado, Rute Pinto, Barbara Testa and Domenico A. Coviello
Life 2022, 12(7), 988; https://doi.org/10.3390/life12070988 - 2 Jul 2022
Cited by 7 | Viewed by 3563
Abstract
An increasing amount of evidence indicates the critical role of the NSD1 gene in Sotos syndrome (SoS), a rare genetic disease, and in tumors. Molecular mechanisms affected by NSD1 mutations are largely uncharacterized. In order to assess the impact of NSD1 haploinsufficiency in [...] Read more.
An increasing amount of evidence indicates the critical role of the NSD1 gene in Sotos syndrome (SoS), a rare genetic disease, and in tumors. Molecular mechanisms affected by NSD1 mutations are largely uncharacterized. In order to assess the impact of NSD1 haploinsufficiency in the pathogenesis of SoS, we analyzed the gene expression profile of fibroblasts isolated from the skin samples of 15 SoS patients and of 5 healthy parents. We identified seven differentially expressed genes and five differentially expressed noncoding RNAs. The most upregulated mRNA was stratifin (SFN) (fold change, 3.9, Benjamini–Hochberg corrected p < 0.05), and the most downregulated mRNA was goosecoid homeobox (GSC) (fold change, 3.9, Benjamini–Hochberg corrected p < 0.05). The most upregulated lncRNA was lnc-C2orf84-1 (fold change, 4.28, Benjamini–Hochberg corrected p < 0.001), and the most downregulated lncRNA was Inc-C15orf57 (fold change, −0.7, Benjamini–Hochberg corrected p < 0.05). A gene set enrichment analysis reported the enrichment of genes involved in the KRAS and E2F signaling pathways, splicing regulation and cell cycle G2/M checkpoints. Our results suggest that NSD1 is involved in cell cycle regulation and that its mutation can induce the down-expression of genes involved in tumoral and neoplastic differentiation. The results contribute to defining the role of NSD1 in fibroblasts for the prevention, diagnosis and control of SoS. Full article
Show Figures

Figure 1

15 pages, 4270 KiB  
Article
Single-Cell RNA Sequencing Analysis for Oncogenic Mechanisms Underlying Oral Squamous Cell Carcinoma Carcinogenesis with Candida albicans Infection
by Yi-Ping Hsieh, Yu-Hsueh Wu, Siao-Muk Cheng, Fang-Kuei Lin, Daw-Yang Hwang, Shih-Sheng Jiang, Ken-Chung Chen, Meng-Yen Chen, Wei-Fan Chiang, Ko-Jiunn Liu, Nam Cong-Nhat Huynh, Wen-Tsung Huang and Tze-Ta Huang
Int. J. Mol. Sci. 2022, 23(9), 4833; https://doi.org/10.3390/ijms23094833 - 27 Apr 2022
Cited by 19 | Viewed by 5235
Abstract
Oral squamous cell carcinoma (OSCC) carcinogenesis involves heterogeneous tumor cells, and the tumor microenvironment (TME) is highly complex with many different cell types. Cancer cell–TME interactions are crucial in OSCC progression. Candida albicans (C. albicans)—frequently pre-sent in the oral potentially malignant [...] Read more.
Oral squamous cell carcinoma (OSCC) carcinogenesis involves heterogeneous tumor cells, and the tumor microenvironment (TME) is highly complex with many different cell types. Cancer cell–TME interactions are crucial in OSCC progression. Candida albicans (C. albicans)—frequently pre-sent in the oral potentially malignant disorder (OPMD) lesions and OSCC tissues—promotes malignant transformation. The aim of the study is to verify the mechanisms underlying OSCC car-cinogenesis with C. albicans infection and identify the biomarker for the early detection of OSCC and as the treatment target. The single-cell RNA sequencing analysis (scRNA-seq) was performed to explore the cell subtypes in normal oral mucosa, OPMD, and OSCC tissues. The cell composi-tion changes and oncogenic mechanisms underlying OSCC carcinogenesis with C. albicans infec-tion were investigated. Gene Set Variation Analysis (GSVA) was used to survey the mechanisms underlying OSCC carcinogenesis with and without C. albicans infection. The results revealed spe-cific cell clusters contributing to OSCC carcinogenesis with and without C. albicans infection. The major mechanisms involved in OSCC carcinogenesis without C. albicans infection are the IL2/STAT5, TNFα/NFκB, and TGFβ signaling pathways, whereas those involved in OSCC carcinogenesis with C. albicans infection are the KRAS signaling pathway and E2F target down-stream genes. Finally, stratifin (SFN) was validated to be a specific biomarker of OSCC with C. albicans infection. Thus, the detailed mechanism underlying OSCC carcinogenesis with C. albicans infection was determined and identified the treatment biomarker with potential precision medicine applications. Full article
Show Figures

Figure 1

13 pages, 2309 KiB  
Article
MiR-200c-3p Modulates Cisplatin Resistance in Biliary Tract Cancer by ZEB1-Independent Mechanisms
by Florian Posch, Felix Prinz, Amar Balihodzic, Christian Mayr, Tobias Kiesslich, Christiane Klec, Katharina Jonas, Dominik A. Barth, Jakob M. Riedl, Armin Gerger and Martin Pichler
Cancers 2021, 13(16), 3996; https://doi.org/10.3390/cancers13163996 - 8 Aug 2021
Cited by 9 | Viewed by 3597
Abstract
Biliary tract cancer is a major global health issue in cancer-related mortality. Therapeutic options are limited, and cisplatin-based treatment schedules represent the mainstay of first-line therapeutic strategies. Although the gain of survival by the addition of cisplatin to gemcitabine is moderate, acquired cisplatin [...] Read more.
Biliary tract cancer is a major global health issue in cancer-related mortality. Therapeutic options are limited, and cisplatin-based treatment schedules represent the mainstay of first-line therapeutic strategies. Although the gain of survival by the addition of cisplatin to gemcitabine is moderate, acquired cisplatin resistance frequently leads to treatment failures with mechanisms that are still poorly understood. Epithelial–mesenchymal transition (EMT) is a dynamic process that changes the shape, function, and gene expression pattern of biliary tract cancer cells. In this study, we explored the influence of the EMT-regulating miR-200c-3p on cisplatin sensitivity in biliary tract cancer cells. Using gain of function experiments, we demonstrated that miR-200c-3p regulates epithelial cell markers through the downregulation of the transcription factor ZEB1. MiR-200c-3p upregulation led to a decreased sensitivity against cisplatin, as observed in transient overexpression models as well as in cell lines stably overexpressing miR-200c-3p. The underlying mechanism seems to be independent of miR-200c-3p’s influence on ZEB1 expression, as ZEB1 knockdown resulted in the opposite effect on cisplatin resistance, which was abolished when ZEB1 knockdown and miR-200c-3p overexpression occurred in parallel. Using a gene panel of 40 genes that were previously associated with cisplatin resistance, two (Dual Specificity Phosphatase 16 (DUSP16) and Stratifin (SFN)) were identified as significantly (>2 fold, p-value < 0.05) up-regulated in miR-200c-3p overexpressing cells. In conclusion, miR-200c-3p might be an important contributor to cisplatin resistance in biliary tract cancer, independently of its interaction with ZEB1. Full article
Show Figures

Figure 1

Back to TopTop