Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = straight-walled arched tunnel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11804 KiB  
Article
The Fracture Evolution Mechanism of Tunnels with Different Cross-Sections under Biaxial Loading
by Lexin Jia, Shili Qiu, Yu Cong and Xiaoshan Wang
Processes 2024, 12(5), 891; https://doi.org/10.3390/pr12050891 - 28 Apr 2024
Viewed by 1410
Abstract
Biaxial compression tests based on an elliptical tunnel were conducted to study the failure characteristics and the meso-crack evolution mechanism of tunnels with different cross-sections constructed in sandstone. The progressive crack propagation process around the elliptical tunnel was investigated using a real-time digital [...] Read more.
Biaxial compression tests based on an elliptical tunnel were conducted to study the failure characteristics and the meso-crack evolution mechanism of tunnels with different cross-sections constructed in sandstone. The progressive crack propagation process around the elliptical tunnel was investigated using a real-time digital image correlation (DIC) system. Numerical simulations were performed on egg-shaped, U-shaped, and straight-walled arched tunnels based on the mesoscopic parameters of the elliptical tunnel and following the principle of an equal cross-sectional area. The meso-crack evolution and stress conditions of the four types of tunnels were compared. The results show that (1) fractures around an elliptical tunnel were mainly distributed at the end of the long axis and mainly induce slabbing failure, and the failure mode is similar to a V-shaped notch; (2) strain localization is an important characteristic of rock fracturing, which forebodes the initiation, propagation, and coalescence paths of macro-cracks; and (3) the peak loads of tunnels with egg-shaped, U-shaped, and straight-walled arched cross-sections are 98.76%, 97.56%, and 90.57% that of an elliptical cross-section. The elliptical cross-section shows the optimal bearing capacity. Full article
Show Figures

Figure 1

17 pages, 9319 KiB  
Article
Critical Failure Characteristics of a Straight-Walled Arched Tunnel Constructed in Sandstone under Biaxial Loading
by Jian Gao, Xiaoshan Wang, Yu Cong, Qiqi Li, Yequan Pan and Xianglin Ding
Processes 2024, 12(4), 841; https://doi.org/10.3390/pr12040841 - 22 Apr 2024
Cited by 1 | Viewed by 1529
Abstract
To characterize the failure of rock mass surrounding underground tunnels, biaxial compression tests were conducted on a real sandstone model with a straight-walled arched hole. The acoustic emission (AE) system and digital image correlation (DIC) optical inspection equipment were used to investigate the [...] Read more.
To characterize the failure of rock mass surrounding underground tunnels, biaxial compression tests were conducted on a real sandstone model with a straight-walled arched hole. The acoustic emission (AE) system and digital image correlation (DIC) optical inspection equipment were used to investigate the crack evolution process and failure precursors of the tunnel. A two-dimensional particle flow code (PFC2D) was used to conduct numerical simulations on the sample, so as to investigate the mesoscopic failure mechanism of rock mass. The results show that the failure of the single tunnel constructed in sandstone occurs mainly in the walls on both sides (between the spandrels and arch feet), showing slabbing failure characteristics and a certain abruptness. The crack initiation in sandstone in early stage is not obvious, and the crack propagation in rock mass is rapid when acoustic emissions are enhanced. The small increments in the AE count and amplitude and the continuous reduction in the b-value can be used as precursors for the failure of rock mass. When the height–span ratio is 0.8 and 1.0, the stress distribution around the chamber is more uniform, and when the height–span ratio is greater than 1.0, the stress is mainly concentrated in the vault and arch bottom. In the PFC simulations, tensile fractures firstly initiate in the middle of walls and at the arch feet, arcuate fracture concentration zones are then formed, in which shear fractures appear and a few particles spall from the surfaces. When approaching the ultimate bearing capacity, rock masses on both sides of the tunnel are fractured over large areas, and the slender coalesced fractured zone develops to the deep part of rock mass, causing failure of the sample. Full article
Show Figures

Figure 1

20 pages, 8903 KiB  
Article
Optimization Analysis of Partition Wall Support Scheme of Multi-Arch Tunnel
by Shun-Qing Yang, Xue-Li Li, Wei Zhang, Sheng-Yuan Fan and Lian-Baichao Liu
Buildings 2024, 14(2), 490; https://doi.org/10.3390/buildings14020490 - 9 Feb 2024
Cited by 2 | Viewed by 1360
Abstract
With the fast progress of infrastructure projects, super-large cross-section projects are constantly emerging, and, therefore, engineering challenges and problems are increasing. Taking the triple-arch tunnel project in the turn-back line section of Santunbei Station in Urumqi Metro Line 1# as a case study, [...] Read more.
With the fast progress of infrastructure projects, super-large cross-section projects are constantly emerging, and, therefore, engineering challenges and problems are increasing. Taking the triple-arch tunnel project in the turn-back line section of Santunbei Station in Urumqi Metro Line 1# as a case study, this research applied numerical simulation software Midas GTS/NX 2022 for the analysis of tunnel force and deformation in triple-arch cross-sections under different support forms of partition wall. Following the optimization of the support design of the mixed partition wall to a single straight wall, the following analytical results were obtained: surface settlement was decreased by 21.15% at the original cross-section; maximum values of principal stress and displacement of partition wall were decreased by 6.73 and 10.64%, respectively; and corresponding values for initial support structure were decreased by 21.47% and 54.74%, respectively. Meanwhile, combined with comparative analysis of engineering measurement and numerical simulation results, surface settlement and vault deformation were found to be similar to the optimized simulation results, which not only verified the reliability of simulation results but also ensured the safe and smooth construction of the project, greatly improving construction efficiency and saving construction time and cost. Full article
(This article belongs to the Special Issue Safety and Optimization of Building Structures)
Show Figures

Figure 1

19 pages, 8100 KiB  
Article
Gas Pipeline Response to Underlying Straight-Wall Arch Tunnel Construction
by Xu Zhang, Chiyu Liang, Shimin Huang and Youjun Xu
Buildings 2023, 13(10), 2661; https://doi.org/10.3390/buildings13102661 - 22 Oct 2023
Cited by 3 | Viewed by 1805
Abstract
Straight-wall arch cross-sections are usually designed at the entrance and exit tunnels of subway stations, and dense underground pipelines often cross these cross-sections at close range. Among these pipelines, gas pipelines have the highest risk level. Therefore, it is necessary to reduce the [...] Read more.
Straight-wall arch cross-sections are usually designed at the entrance and exit tunnels of subway stations, and dense underground pipelines often cross these cross-sections at close range. Among these pipelines, gas pipelines have the highest risk level. Therefore, it is necessary to reduce the deformation influence of underground crossing construction on existing gas pipelines. Based on the No. 2 entrance and exit tunnel project of Zhongshan Road Station of the Hohhot Metro Line 2, using the methods of numerical simulation and field monitoring, this paper has particularly investigated the influence of straight-wall arch tunnel construction by applying the pre-grouting reinforcement and double-side drift method to the deformation of existing gas pipelines. The research results show that the double-side drift method is an efficient and sustainable construction method for straight-wall arch tunnels, which can effectively reduce the crossing construction disturbance to overlying gas pipelines. The measured maximum settlement of the existing gas pipeline is 18.46 mm, and the maximum settlement of the new tunnel vault is 22.86 mm, with both values satisfying the requirements for deformation control. The simulation results are consistent with the measured results of gas pipeline settlement. This study shows that the safety control scheme employed in the field with a tunnel excavation step of 6 m, stratum reinforcement with upper semi-section grouting, and a grouting reinforcement range of 2.0 m is reasonable and effective. This scheme can provide a reference for the deformation control of similar underground gas pipelines in the crossing construction of straight-wall arch tunnels at close range. Full article
(This article belongs to the Special Issue Design, Construction and Maintenance of Underground Structures)
Show Figures

Figure 1

13 pages, 8412 KiB  
Article
Influence of Blasting Disturbance on the Dynamic Stress Distribution and Fracture Area of Rock Tunnels
by Ruifeng Liu, Jialong Yang, Yumei Du and Meng Li
Appl. Sci. 2023, 13(9), 5503; https://doi.org/10.3390/app13095503 - 28 Apr 2023
Cited by 4 | Viewed by 1939
Abstract
In order to study the dynamic stress distribution and the fracture area of rock around the tunnel under different orientations of blasting disturbance, AUTODYN finite difference method software was used to conduct numerical simulation research. Gauge monitoring points were set around the numerical [...] Read more.
In order to study the dynamic stress distribution and the fracture area of rock around the tunnel under different orientations of blasting disturbance, AUTODYN finite difference method software was used to conduct numerical simulation research. Gauge monitoring points were set around the numerical model of the tunnel to conduct real-time monitoring of the stress distribution, displacement and fracture area of the tunnel. Based on the analysis of the stress wave propagation law, the following conclusions are obtained: (1) under the condition of the same blasting loads, the stress and displacement of the tunnel is relatively small when the blasting disturbance source is located above the roof, i.e., the stress state of the tunnel is relatively stable and the fracture area around the tunnel is minimal; (2) from the uniaxial stress around the tunnel and the tunnel peripheral displacement, it can be seen that the displacement caused by horizontal direction stress of the tunnel is the largest, and the deformation is mainly concentrated above the floor and at the shoulder, while the vertical wall part has almost no deformation; (3) for brittle materials such as rock, the arch-shaped stress-bearing surface is more likely to disperse stress, while the straight wall and flat floor of the tunnel cannot well disperse stress, resulting in uneven stress on the stress-bearing surface, uncoordinated deformation and ultimately, failure. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

15 pages, 4571 KiB  
Article
Influence of Base-Angle Bolt Support Parameters and Different Sections on Overall Stability of a Roadway under a Deeply Buried High Stress Environment Based on Numerical Simulation
by Qinzheng Wu, Huanxin Liu, Bing Dai, Li Cheng, Danli Li and Penghui Qin
Sustainability 2023, 15(3), 2496; https://doi.org/10.3390/su15032496 - 30 Jan 2023
Cited by 8 | Viewed by 1840
Abstract
Strengthening the base-angle of a roadway can have a beneficial impact on its overall stability, but the specific optimal parameter selection range is still unclear. Fast Lagrangian Analysis of Continua 3D (FLAC3D) software is used to carry out the stability analysis of 5 [...] Read more.
Strengthening the base-angle of a roadway can have a beneficial impact on its overall stability, but the specific optimal parameter selection range is still unclear. Fast Lagrangian Analysis of Continua 3D (FLAC3D) software is used to carry out the stability analysis of 5 kinds of roadway models with different section shapes under the conditions of no support and different base-angle bolt support angles, and the simulation verification is carried out under the actual working conditions of the Sanshandao Gold Mine. The conclusion is as follows: without support, the self-stability of a tri-centric arch roadway is the best, and that of a rectangular roadway is the worst. When the base-angle bolt dip angle is between 15° and 45°, a better supporting effect can be obtained under the established 5 kinds of roadway sections. In the straight wall circular arch roadway of the Sanshandao Gold Mine, the roadway stability is the best when the angle of the base-angle bolt is 15°. However, changing the length of the base-angle bolt, even if the length of the base-angle bolt is increased to a certain extent, will decrease the overall supporting effect of the supporting structure. This paper can provide a reference for the selection of tunnel bottom corner bolt support parameters. Full article
(This article belongs to the Special Issue Challenges and Strategies for Sustainable Development in Deep Mines)
Show Figures

Figure 1

Back to TopTop