Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = storage off‑gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 7349 KiB  
Article
Valorizing Steelworks Gases by Coupling Novel Methane and Methanol Synthesis Reactors with an Economic Hybrid Model Predictive Controller
by Alexander Hauser, Philipp Wolf-Zoellner, Stéphane Haag, Stefano Dettori, Xiaoliang Tang, Moein Mighani, Ismael Matino, Claudio Mocci, Valentina Colla, Sebastian Kolb, Michael Bampaou, Kyriakos Panopoulos, Nina Kieberger, Katharina Rechberger and Juergen Karl
Metals 2022, 12(6), 1023; https://doi.org/10.3390/met12061023 - 16 Jun 2022
Cited by 16 | Viewed by 3354
Abstract
To achieve the greenhouse gas reduction targets formulated in the European Green Deal, energy- and resource-intensive industries such as the steel industry will have to adapt or convert their production. In the long term, new technologies are promising. However, carbon capture storage and [...] Read more.
To achieve the greenhouse gas reduction targets formulated in the European Green Deal, energy- and resource-intensive industries such as the steel industry will have to adapt or convert their production. In the long term, new technologies are promising. However, carbon capture storage and utilization solutions could be considered as short-term retrofitting solutions for existing steelworks. In this context, this paper presents a first experimental demonstration of an approach to the utilization of process off-gases generated in a steelworks by producing methane and methanol in hydrogen-intensified syntheses. Specifically, the integration of two methane synthesis reactors and one methanol synthesis reactor into a steel plant is experimentally simulated. An innovative monitoring and control tool, namely, a dispatch controller, simulates the process off-gas production using a digital twin of the steel plant and optimizes its distribution to existing and new consumers. The operating states/modes of the three reactors resulting from the optimization problem to be solved by the dispatch controller are distributed in real time via an online OPC UA connection to the corresponding experimental plants or their operators and applied there in a decentralized manner. The live coupling test showed that operating values for the different systems can be distributed in parallel from the dispatch controller to the test rigs via the established communication structure without loss. The calculation of a suitable control strategy is performed with a time resolution of one minute, taking into account the three reactors and the relevant steelworks components. Two of each of the methane/methanol synthesis reactors were operated error-free at one time for 10 and 7 h, respectively, with datasets provided by the dispatch controller. All three reactor systems were able to react quickly and stably to dynamic changes in the load or feed gas composition. Consistently high conversions and yields were achieved with low by-product formation. Full article
(This article belongs to the Special Issue Advances in Ironmaking and Steelmaking Processes)
Show Figures

Figure 1

12 pages, 835 KiB  
Article
Understanding Off-Gassing of Biofuel Wood Pellets Using Pellets Produced from Pure Microcrystalline Cellulose with Different Additive Oils
by Workson Siwale, Stefan Frodeson, Michael Finell, Mehrdad Arshadi, Carina Jonsson, Gunnar Henriksson and Jonas Berghel
Energies 2022, 15(6), 2281; https://doi.org/10.3390/en15062281 - 21 Mar 2022
Cited by 6 | Viewed by 3121
Abstract
Fuel wood pellets have the tendency of undergoing self-heating and off-gassing during storage and transportation. Self-heating can lead to spontaneous combustion and cause fires while toxic gasses such as carbon monoxide and some volatile organic compounds released due to off-gassing are a human [...] Read more.
Fuel wood pellets have the tendency of undergoing self-heating and off-gassing during storage and transportation. Self-heating can lead to spontaneous combustion and cause fires while toxic gasses such as carbon monoxide and some volatile organic compounds released due to off-gassing are a human health and environmental hazard. Previous research suggests that the self-heating and off-gassing of wood pellets are as a result of the oxidation of wood extractives. The aim of this study was to identify the extractives, i.e., fatty and resin acids that are responsible for the emissions of carbon monoxide, carbon dioxide and methane from wood pellets by testing the off-gassing tendencies of pellets produced from synthetic microcrystalline cellulose and different additive oils. The additive oils were intentionally selected to represent different types of wood extractives (mainly fatty and resin acids) and they included: tall oil, pine rosin, linseed oil and coconut oil. The highest mean concentrations of carbon monoxide, carbon dioxide and methane were recorded from cellulose pellets with added linseed oil. The concentrations of carbon monoxide and methane for the other four pellet types were negligible and there was no carbon dioxide emission. Pellets with added linseed oil had high off-gas emissions due to the high content of unsaturated fatty acids compared to other pellet types. Full article
Show Figures

Figure 1

13 pages, 2174 KiB  
Article
Monitoring of Biopolymer Production Process Using Soft Sensors Based on Off-Gas Composition Analysis and Capacitance Measurement
by Pavel Hrnčiřík
Fermentation 2021, 7(4), 318; https://doi.org/10.3390/fermentation7040318 - 18 Dec 2021
Cited by 4 | Viewed by 2774
Abstract
This paper focuses on the design of soft sensors for on-line monitoring of the biotechnological process of biopolymer production, in which biopolymers are accumulated in bacteria as an intracellular energy storage material. The proposed soft sensors for on-line estimation of the biopolymer concentration [...] Read more.
This paper focuses on the design of soft sensors for on-line monitoring of the biotechnological process of biopolymer production, in which biopolymers are accumulated in bacteria as an intracellular energy storage material. The proposed soft sensors for on-line estimation of the biopolymer concentration represent an interesting alternative to the traditional off-line analytical techniques of limited applicability for real-time process control. Due to the complexity of biochemical reactions, which make it difficult to create reasonably complex first-principle mathematical models, a data-driven approach to the design of soft sensors has been chosen in the presented study. Thus, regression methods were used in this design, including multivariate statistical methods (PLS, PCR). This approach enabled the creation of soft sensors using historical process data from fed-batch cultivations of the Pseudomonas putida KT2442 strain used for the production of medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Specifically, data from on-line measurements of off-gas composition analysis and culture medium capacitance were used as input to the soft sensors. The resulting soft sensors allow not only on-line estimation of the biopolymer concentration, but also the concentration of the cell biomass of the production bacterial culture. For most of these soft sensors, the estimation error did not exceed 5% of the measurement range. In addition, soft sensors based on capacitance measurement were able to accurately detect the end of the production phase. This study thus offers an innovative and practically relevant contribution to the field of monitoring of bioprocesses used for the production of medium-chain-length biopolymers. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

36 pages, 4947 KiB  
Article
The Potential of Gas Switching Partial Oxidation Using Advanced Oxygen Carriers for Efficient H2 Production with Inherent CO2 Capture
by Carlos Arnaiz del Pozo, Schalk Cloete, Ángel Jiménez Álvaro, Felix Donat and Shahriar Amini
Appl. Sci. 2021, 11(10), 4713; https://doi.org/10.3390/app11104713 - 20 May 2021
Cited by 5 | Viewed by 3805
Abstract
The hydrogen economy has received resurging interest in recent years, as more countries commit to net-zero CO2 emissions around the mid-century. “Blue” hydrogen from natural gas with CO2 capture and storage (CCS) is one promising sustainable hydrogen supply option. Although conventional [...] Read more.
The hydrogen economy has received resurging interest in recent years, as more countries commit to net-zero CO2 emissions around the mid-century. “Blue” hydrogen from natural gas with CO2 capture and storage (CCS) is one promising sustainable hydrogen supply option. Although conventional CO2 capture imposes a large energy penalty, advanced process concepts using the chemical looping principle can produce blue hydrogen at efficiencies even exceeding the conventional steam methane reforming (SMR) process without CCS. One such configuration is gas switching reforming (GSR), which uses a Ni-based oxygen carrier material to catalyze the SMR reaction and efficiently supply the required process heat by combusting an off-gas fuel with integrated CO2 capture. The present study investigates the potential of advanced La-Fe-based oxygen carrier materials to further increase this advantage using a gas switching partial oxidation (GSPOX) process. These materials can overcome the equilibrium limitations facing conventional catalytic SMR and achieve direct hydrogen production using a water-splitting reaction. Results showed that the GSPOX process can achieve mild efficiency improvements relative to GSR in the range of 0.6–4.1%-points, with the upper bound only achievable by large power and H2 co-production plants employing a highly efficient power cycle. These performance gains and the avoidance of toxicity challenges posed by Ni-based oxygen carriers create a solid case for the further development of these advanced materials. If successful, results from this work indicate that GSPOX blue hydrogen plants can outperform an SMR benchmark with conventional CO2 capture by more than 10%-points, both in terms of efficiency and CO2 avoidance. Full article
(This article belongs to the Special Issue Thermodynamics and Sustainable Development)
Show Figures

Figure 1

12 pages, 1465 KiB  
Article
Potential of Thermal Energy Storage for a District Heating System Utilizing Industrial Waste Heat
by Hanne Kauko, Daniel Rohde, Brage Rugstad Knudsen and Terje Sund-Olsen
Energies 2020, 13(15), 3923; https://doi.org/10.3390/en13153923 - 31 Jul 2020
Cited by 11 | Viewed by 3552
Abstract
The potential for utilizing industrial waste heat for district heating is enormous. There is, however, often a temporal mismatch between the waste heat availability and the heating demand, and typically fossil-based peak boilers are used to cover the remaining heat demand. This study [...] Read more.
The potential for utilizing industrial waste heat for district heating is enormous. There is, however, often a temporal mismatch between the waste heat availability and the heating demand, and typically fossil-based peak boilers are used to cover the remaining heat demand. This study investigates the potential of applying a thermal energy storage tank at the district heating supply system at Mo Industrial Park in Norway, where waste heat from the off-gas of a ferrosilicon production plant is the main heating source. To cover peak heating demands, boilers based on CO gas, electricity, and oil are applied. The reduction in peak heating costs and emissions is evaluated as a function of tank size for two different scenarios: (1) a scenario where CO gas, which is a byproduct from another nearby industry, is the main peak heating source; and (2) a scenario where no CO gas is available, and electricity is the main peak heating source. The highest economic viability is obtained with the smallest storage tank with a volume of 1000 m3, yielding a payback period of 7.1/16.2 years and a reduction in total heat production costs of 14.6/10.0% for Scenarios 1/2, respectively. The reduction in CO2 emissions is 19.4/14.8%, equal to 820/32 ton CO2 for the analyzed period. Sensitivity analysis shows a significant reduction in payback period for Scenario 2 with increasing electricity prices, while the payback period in Scenario 1 is most sensitive to the emission factors. Full article
(This article belongs to the Special Issue Recent Studies in District Heating and Cooling Systems)
Show Figures

Figure 1

20 pages, 24566 KiB  
Article
A Moving Bed Reactor for Thermochemical Energy Storage Based on Metal Oxides
by Nicole Carina Preisner and Marc Linder
Energies 2020, 13(5), 1232; https://doi.org/10.3390/en13051232 - 6 Mar 2020
Cited by 18 | Viewed by 4453
Abstract
High-temperature thermal energy storage enables concentrated solar power plants to provide base load. Thermochemical energy storage is based on reversible gas–solid reactions and brings along the advantage of potential loss-free energy storage in the form of separated reaction products and possible high energy [...] Read more.
High-temperature thermal energy storage enables concentrated solar power plants to provide base load. Thermochemical energy storage is based on reversible gas–solid reactions and brings along the advantage of potential loss-free energy storage in the form of separated reaction products and possible high energy densities. The redox reaction of metal oxides is able to store thermal energy at elevated temperatures with air providing the gaseous reaction partner. However, due to the high temperature level, it is crucial to extract both the inherent sensible and thermochemical energies of the metal-oxide particles for enhanced system efficiency. So far, experimental research in the field of thermochemical energy storage focused mainly on solar receivers for continuously charging metal oxides. A continuously operated system of energy storage and solar tower decouples the storage capacity from generated power with metal-oxide particles applied as heat transfer medium and energy storage material. Hence, a heat exchanger based on a countercurrent moving bed concept was developed in a kW -scale. The reactor addresses the combined utilization of the reaction enthalpy of the oxidation and the extraction of thermal energy of a manganese–iron-oxide particle flow. A stationary temperature profile of the bulk was achieved with two distinct temperature sections. The oxidation induced a nearly isothermal section with an overall stable off-gas temperature. The oxidation and heat extraction from the manganese–iron oxide resulted in a total energy density of 569 kJ/kg with a thermochemical share of 21.1%. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

10 pages, 1923 KiB  
Article
Simple Technique of Exfoliation and Dispersion of Multilayer Graphene from Natural Graphite by Ozone-Assisted Sonication
by Zaw Lin, Paneer Selvam Karthik, Masaki Hada, Takeshi Nishikawa and Yasuhiko Hayashi
Nanomaterials 2017, 7(6), 125; https://doi.org/10.3390/nano7060125 - 27 May 2017
Cited by 63 | Viewed by 10901
Abstract
Owing to its unique properties, graphene has attracted tremendous attention in many research fields. There is a great space to develop graphene synthesis techniques by an efficient and environmentally friendly approach. In this paper, we report a facile method to synthesize well-dispersed multilayer [...] Read more.
Owing to its unique properties, graphene has attracted tremendous attention in many research fields. There is a great space to develop graphene synthesis techniques by an efficient and environmentally friendly approach. In this paper, we report a facile method to synthesize well-dispersed multilayer graphene (MLG) without using any chemical reagents or organic solvents. This was achieved by the ozone-assisted sonication of the natural graphite in a water medium. The frequency or number of ozone treatments plays an important role for the dispersion in the process. The possible mechanism of graphene exfoliation and the introduction of functional groups have been postulated. The experimental setup is unique for ozone treatment and enables the elimination of ozone off-gas. The heat generated by the dissipation of ultrasonic waves was used as it is, and no additional heat was supplied. The graphene dispersion was stable, and no evidence of aggregation was observed---even after several months. The characterization results show that well-dispersed MLG was successfully synthesized without any significant damage to the overall structure. The graphene obtained by this method has potential applications in composite materials, conductive coatings, energy storage, and electronic devices. Full article
Show Figures

Graphical abstract

15 pages, 680 KiB  
Article
Analysis on Storage Off-Gas Emissions from Woody, Herbaceous, and Torrefied Biomass
by Jaya Shankar Tumuluru, C. Jim Lim, Xiaotao T. Bi, Xingya Kuang, Staffan Melin, Fahimeh Yazdanpanah and Shahab Sokhansanj
Energies 2015, 8(3), 1745-1759; https://doi.org/10.3390/en8031745 - 2 Mar 2015
Cited by 31 | Viewed by 7989
Abstract
Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off‑gas emissions during storage. Storage canisters with gas‑collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced [...] Read more.
Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off‑gas emissions during storage. Storage canisters with gas‑collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO2) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, at 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO2, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO2 is highest for switchgrass and CH4 is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C. Full article
(This article belongs to the Special Issue Bioenergy and Biorefining)
Show Figures

Graphical abstract

Back to TopTop