Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = stochastic foundation of quantum mechanics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4438 KB  
Article
NeuroQ: Quantum-Inspired Brain Emulation
by Jordi Vallverdú and Gemma Rius
Biomimetics 2025, 10(8), 516; https://doi.org/10.3390/biomimetics10080516 - 7 Aug 2025
Cited by 2 | Viewed by 3628 | Correction
Abstract
Traditional brain emulation approaches often rely on classical computational models that inadequately capture the stochastic, nonlinear, and potentially coherent features of biological neural systems. In this position paper, we introduce NeuroQ a quantum-inspired framework grounded in stochastic mechanics, particularly Nelson’s formulation. By reformulating [...] Read more.
Traditional brain emulation approaches often rely on classical computational models that inadequately capture the stochastic, nonlinear, and potentially coherent features of biological neural systems. In this position paper, we introduce NeuroQ a quantum-inspired framework grounded in stochastic mechanics, particularly Nelson’s formulation. By reformulating the FitzHugh–Nagumo neuron model with structured noise, we derive a Schrödinger-like equation that encodes membrane dynamics in a quantum-like formalism. This formulation enables the use of quantum simulation strategies—including Hamiltonian encoding, variational eigensolvers, and continuous-variable models—for neural emulation. We outline a conceptual roadmap for implementing NeuroQ on near-term quantum platforms and discuss its broader implications for neuromorphic quantum hardware, artificial consciousness, and time-symmetric cognitive architectures. Rather than demonstrating a working prototype, this work aims to establish a coherent theoretical foundation for future research in quantum brain emulation. Full article
(This article belongs to the Special Issue Recent Advances in Bioinspired Robot and Intelligent Systems)
Show Figures

Figure 1

130 pages, 1576 KB  
Review
Foundations of Nonequilibrium Statistical Mechanics in Extended State Space
by Purushottam Das Gujrati
Foundations 2023, 3(3), 419-548; https://doi.org/10.3390/foundations3030030 - 23 Aug 2023
Cited by 2 | Viewed by 3110
Abstract
The review provides a pedagogical but comprehensive introduction to the foundations of a recently proposed statistical mechanics (μNEQT) of a stable nonequilibrium thermodynamic body, which may be either isolated or interacting. It is an extension of the well-established equilibrium statistical mechanics [...] Read more.
The review provides a pedagogical but comprehensive introduction to the foundations of a recently proposed statistical mechanics (μNEQT) of a stable nonequilibrium thermodynamic body, which may be either isolated or interacting. It is an extension of the well-established equilibrium statistical mechanics by considering microstates mk in an extended state space in which macrostates (obtained by ensemble averaging A^) are uniquely specified so they share many properties of stable equilibrium macrostates. The extension requires an appropriate extended state space, three distinct infinitessimals dα=(d,de,di) operating on various quantities q during a process, and the concept of reduction. The mechanical process quantities (no stochasticity) like macrowork are given by A^dαq, but the stochastic quantities C^αq like macroheat emerge from the commutator C^α of dα and A^. Under the very common assumptions of quasi-additivity and quasi-independence, exchange microquantities deqk such as exchange microwork and microheat become nonfluctuating over mk as will be explained, a fact that does not seem to have been appreciated so far in diverse branches of modern statistical thermodynamics (fluctuation theorems, quantum thermodynamics, stochastic thermodynamics, etc.) that all use exchange quantities. In contrast, dqk and diqk are always fluctuating. There is no analog of the first law for a microstate as the latter is a purely mechanical construct. The second law emerges as a consequence of the stability of the system, and cannot be violated unless stability is abandoned. There is also an important thermodynamic identity diQdiW  0 with important physical implications as it generalizes the well-known result of Count Rumford and the Gouy-Stodola theorem of classical thermodynamics. The μNEQT has far-reaching consequences with new results, and presents a new understanding of thermodynamics even of an isolated system at the microstate level, which has been an unsolved problem. We end the review by applying it to three different problems of fundamental interest. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

57 pages, 732 KB  
Article
Simultaneous Measurements of Noncommuting Observables: Positive Transformations and Instrumental Lie Groups
by Christopher S. Jackson and Carlton M. Caves
Entropy 2023, 25(9), 1254; https://doi.org/10.3390/e25091254 - 23 Aug 2023
Cited by 4 | Viewed by 3755
Abstract
We formulate a general program for describing and analyzing continuous, differential weak, simultaneous measurements of noncommuting observables, which focuses on describing the measuring instrument autonomously, without states. The Kraus operators of such measuring processes are time-ordered products of fundamental differential positive transformations [...] Read more.
We formulate a general program for describing and analyzing continuous, differential weak, simultaneous measurements of noncommuting observables, which focuses on describing the measuring instrument autonomously, without states. The Kraus operators of such measuring processes are time-ordered products of fundamental differential positive transformations, which generate nonunitary transformation groups that we call instrumental Lie groups. The temporal evolution of the instrument is equivalent to the diffusion of a Kraus-operator distribution function, defined relative to the invariant measure of the instrumental Lie group. This diffusion can be analyzed using Wiener path integration, stochastic differential equations, or a Fokker-Planck-Kolmogorov equation. This way of considering instrument evolution we call the Instrument Manifold Program. We relate the Instrument Manifold Program to state-based stochastic master equations. We then explain how the Instrument Manifold Program can be used to describe instrument evolution in terms of a universal cover that we call the universal instrumental Lie group, which is independent not just of states, but also of Hilbert space. The universal instrument is generically infinite dimensional, in which case the instrument’s evolution is chaotic. Special simultaneous measurements have a finite-dimensional universal instrument, in which case the instrument is considered principal, and it can be analyzed within the differential geometry of the universal instrumental Lie group. Principal instruments belong at the foundation of quantum mechanics. We consider the three most fundamental examples: measurement of a single observable, position and momentum, and the three components of angular momentum. As these measurements are performed continuously, they converge to strong simultaneous measurements. For a single observable, this results in the standard decay of coherence between inequivalent irreducible representations. For the latter two cases, it leads to a collapse within each irreducible representation onto the classical or spherical phase space, with the phase space located at the boundary of these instrumental Lie groups. Full article
(This article belongs to the Special Issue Quantum Probability and Randomness IV)
Show Figures

Figure 1

15 pages, 765 KB  
Article
On the Stochastic Mechanics Foundation of Quantum Mechanics
by Michael Beyer and Wolfgang Paul
Universe 2021, 7(6), 166; https://doi.org/10.3390/universe7060166 - 27 May 2021
Cited by 8 | Viewed by 5433
Abstract
Among the famous formulations of quantum mechanics, the stochastic picture developed since the middle of the last century remains one of the less known ones. It is possible to describe quantum mechanical systems with kinetic equations of motion in configuration space based on [...] Read more.
Among the famous formulations of quantum mechanics, the stochastic picture developed since the middle of the last century remains one of the less known ones. It is possible to describe quantum mechanical systems with kinetic equations of motion in configuration space based on conservative diffusion processes. This leads to the representation of physical observables through stochastic processes instead of self-adjoint operators. The mathematical foundations of this approach were laid by Edward Nelson in 1966. It allows a different perspective on quantum phenomena without necessarily using the wave-function. This article recaps the development of stochastic mechanics with a focus on variational and extremal principles. Furthermore, based on recent developments of optimal control theory, the derivation of generalized canonical equations of motion for quantum systems within the stochastic picture are discussed. These so-called quantum Hamilton equations add another layer to the different formalisms from classical mechanics that find their counterpart in quantum mechanics. Full article
(This article belongs to the Special Issue Foundations of Quantum Mechanics)
Show Figures

Figure 1

Back to TopTop