Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = stepping-up

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4388 KB  
Article
Neuromuscular and Kinematic Strategies During Step-Up and Down-Forwards Task in Individuals with Knee Osteoarthritis
by Denise-Teodora Nistor, Maggie Brown and Mohammad Al-Amri
J. Clin. Med. 2026, 15(3), 1278; https://doi.org/10.3390/jcm15031278 - 5 Feb 2026
Abstract
Background/Objectives: Knee osteoarthritis (KOA) is associated with pain, functional decline, and altered biomechanics. The Step-Up and Down-Forwards (StUD-F) task provides an ecologically relevant assessment of challenging movements. This study investigated neuromuscular activation and lower-limb kinematics of leading and trailing-limbs during the StUD-F in [...] Read more.
Background/Objectives: Knee osteoarthritis (KOA) is associated with pain, functional decline, and altered biomechanics. The Step-Up and Down-Forwards (StUD-F) task provides an ecologically relevant assessment of challenging movements. This study investigated neuromuscular activation and lower-limb kinematics of leading and trailing-limbs during the StUD-F in individuals with KOA. Methods: Forty participants with KOA (65.3 ± 7.68 years; 21M/19F; BMI 28.9 ± 4.52 kg/m2) completed a 25 cm box StUD-F task. Surface electromyograph recorded bilateral activation of the vastus medialis (VM), vastus lateralis (VL), bicep femoris (BF), and semitendinosus (ST). Triplanar hip, knee, and ankle joint angles were estimated using inertial measurement units. StUD-F events (initial stance; step contact; ascent completion; descent preparation; step-down touchdown; and descent completion) were identified using custom algorithms. Pain was assessed using visual analogue scales and the Knee Injury and Osteoarthritis Outcome Score (KOOS). Limb differences were analysed for leading or trailing roles using paired samples t-tests or non-parametric equivalents; waveforms were visually inspected. Results: Distinct neuromuscular and kinematic asymmetries were observed when affected and contralateral limbs were compared within each role (leading/trailing). During step-up, the affected leading limb demonstrated higher quadriceps activation at initial stance (VM: p = 0.035; VL: p = 0.027) and reduced trailing-limb activation at step contact (VM: p = 0.015; VL: p = 0.018), with sagittal-plane ankle differences (p = 0.004). During step-down, when the affected limb initiated ascent, trailing limb activation was higher at descent completion (VL: p < 0.001; VM: p = 0.003; BF: p = 0.009), with coronal-plane hip deviations (p < 0.001). When the contralateral limb-initiated ascent, trailing-limb muscles activation differences (VM: p < 0.001; VL: p = 0.015; BF: p = 0.007) and ankle/coronal-plane asymmetries (p ≤ 0.049) persisted. Conclusions: The StUD-F task elicits altered strategies in KOA, including elevated quadriceps–hamstring co-activation and altered sagittal/coronal alignment, and habitual limb choice across ascent and descent. These adaptations may enhance stability and joint protection but could increase medial compartment loading. The findings support rehabilitation focused on dynamic control, alignment, and shock absorption. Full article
(This article belongs to the Topic New Advances in Musculoskeletal Disorders, 2nd Edition)
Show Figures

Figure 1

15 pages, 1468 KB  
Article
Large-Signal Nonlinear Average Model for a Voltage-Controlled Flyback Converter
by David Eduardo Giraldo-Hernández, Mario Andrés Bolaños-Navarrete, Fabiola Angulo, Gustavo Osorio, Nicols Astaiza, Juan David Mina-Casaran and Wilder Herrera
Energies 2025, 18(3), 451; https://doi.org/10.3390/en18030451 - 21 Jan 2025
Viewed by 1461
Abstract
Flyback converters are popular in various electronic applications due to their efficiency, galvanic isolation, and voltage stepping-up. However, their modeling and analysis present significant challenges. Traditional switched models offer high precision but require extensive computational resources, which is impractical for large-scale simulations. The [...] Read more.
Flyback converters are popular in various electronic applications due to their efficiency, galvanic isolation, and voltage stepping-up. However, their modeling and analysis present significant challenges. Traditional switched models offer high precision but require extensive computational resources, which is impractical for large-scale simulations. The alternative linear large-signal models are effective for studying stability near fixed operating points but fall short in capturing transient dynamics, limiting their use in the analysis and design of large or complex systems. This paper presents a novel nonlinear approach for representing a proportional–integral (PI) voltage-controlled flyback converter operating in continuous conduction mode (CCM) that accurately captures transients while reducing the computational burden. Numerical simulations in a study case confirm that the model effectively captures the converter dynamics under various conditions, achieving steady-state errors below 0.07% and accelerations up to 54×. These results facilitate efficient design iterations across a broad range of applications, including renewable energy systems, battery charging, and electric vehicles. Full article
Show Figures

Figure 1

19 pages, 724 KB  
Review
Attitudes towards Plastic Pollution: A Review and Mitigations beyond Circular Economy
by Kuok Ho Daniel Tang
Waste 2023, 1(2), 569-587; https://doi.org/10.3390/waste1020034 - 15 Jun 2023
Cited by 20 | Viewed by 14608
Abstract
Plastic pollution has received unprecedented attention globally, and there are increasing calls to control it. Despite this, the uptrends of plastic consumption and mismanaged plastic waste show little sign of reversal. This review aims to examine the attitudes of various societal groups towards [...] Read more.
Plastic pollution has received unprecedented attention globally, and there are increasing calls to control it. Despite this, the uptrends of plastic consumption and mismanaged plastic waste show little sign of reversal. This review aims to examine the attitudes of various societal groups towards plastics to identify the behavioral barriers to reduce plastic pollution and synthesize effective countermeasures. It achieved the aim through content analysis of the most recent literature related to attitudes and behaviors towards plastic pollution, consumption and management, as well as an important emerging theme on plastics recycling ecosystem and economy. It reveals the general negative attitudes of the participants in the studies reviewed towards plastic pollution and their willing attitude to act against it by supporting campaigns, paying for environmentally friendly alternatives and supporting solution-based interventions from governments including policies, regulations and guidelines. Inconvenience due to limited options for plastic items and habits are two main barriers to behavioral changes. This underscores the crucial roles of governments to tap into these attitudes to lead and intensify plastic pollution control through a multi-pronged approach that facilitates systematic substitution of conventional plastics with environmentally friendly alternatives as well as the stepping-up of the circular plastic economy and industrial symbiosis. This review deems that progressively regulated capping of conventional plastic production and consumption could help the transition, and the public could complement government endeavors through education, mutual influence and awareness-raising which could also be driven by governmental policies and programs. Full article
Show Figures

Figure 1

17 pages, 5842 KB  
Article
Multi-Input Ćuk-Derived Buck-Boost Voltage Source Inverter for Photovoltaic Systems in Microgrid Applications
by Eltaib Abdeen, Mahmoud A. Gaafar, Mohamed Orabi, Emad M. Ahmed and Abdelali El Aroudi
Energies 2019, 12(10), 2007; https://doi.org/10.3390/en12102007 - 25 May 2019
Cited by 7 | Viewed by 3956
Abstract
This paper presents a multi-input Ćuk-derived Buck-Boost voltage source inverter (CBBVSI) for Photovoltaic (PV) systems. The proposed topology consists of a single-stage DC-AC inverter that combines both DC-DC and DC-AC stages. The DC-DC stage is used for stepping-up the voltage from the PV [...] Read more.
This paper presents a multi-input Ćuk-derived Buck-Boost voltage source inverter (CBBVSI) for Photovoltaic (PV) systems. The proposed topology consists of a single-stage DC-AC inverter that combines both DC-DC and DC-AC stages. The DC-DC stage is used for stepping-up the voltage from the PV generator. Simultaneously, the DC-AC stage is used for interfacing the PV source with the AC grid. The topology allows three sources to utilize the antiparallel diodes for each inverter leg for transferring the energy. The proposed system exhibits several features such as a reduction of the number of components compared to typical two-stage structures, and Split-Source Inverter (SSI), and Z-Source Inverter (ZSI) topologies. Moreover, the power of each PV source can be harvested either simultaneously or separately since independent Maximum Power Point Tracking (MPPT) is performed. The system was simulated using MATLAB/SIMULINK software and a 1 kW laboratory prototype was implemented to verify the operation of the proposed CBBVSI. The numerical simulations are presented together with the experimental results, showing a good agreement. Full article
Show Figures

Figure 1

Back to TopTop