Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = starve-fed extrusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6852 KiB  
Article
Scaling-Up for the Counter-Rotating Twin Screw Extrusion of Polymers
by Andrzej Nastaj and Krzysztof Wilczyński
Polymers 2024, 16(19), 2720; https://doi.org/10.3390/polym16192720 - 26 Sep 2024
Cited by 1 | Viewed by 1604
Abstract
A novel and original computer scaling-up system for the counter-rotating twin screw extrusion of polymers was developed. In the system, each scaling parameter (scaling criterion) may be considered as an objective function to be minimized for the single parameters or the functional relationships [...] Read more.
A novel and original computer scaling-up system for the counter-rotating twin screw extrusion of polymers was developed. In the system, each scaling parameter (scaling criterion) may be considered as an objective function to be minimized for the single parameters or the functional relationships along the length of the screw. Scaling was based on the process simulation, which was performed using the comprehensive (or global) counter-rotating twin screw extrusion program called TSEM (Twin Screw Extrusion Model). The extrusion process was scaled by applying GASESTWIN (Genetic Algorithms Screw Extrusion Scaling) software developed for this purpose using genetic algorithms. Scaling up the extrusion process was carried out to enhance extrusion process throughput according to the scaling criteria specified by the single quantities of polymer melt temperature at the die exit and relative melting length, and by distributions along the screw length of the extrusion parameters of the polymer melt temperature and polymer plasticating. The global objective function had the lowest value for the selected extrusion parameters, which means the minimal differences between the values of the scaled-up processes and extrusion throughput was significantly increased. The solution to the problem of scaling the counter-rotating process presented in this paper complements the existing solutions for optimizing and scaling basic variants of the extrusion process, i.e., flood-fed and starve (metered)-fed single-screw extrusion, as well as co-rotating and counter-rotating twin-screw extrusion. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

20 pages, 2592 KiB  
Article
Computational Scale-Up for Flood Fed/Starve Fed Single Screw Extrusion of Polymers
by Andrzej Nastaj and Krzysztof Wilczyński
Polymers 2022, 14(2), 240; https://doi.org/10.3390/polym14020240 - 7 Jan 2022
Cited by 2 | Viewed by 3165
Abstract
A novel scaling-up computer system for single screw extrusion of polymers has been developed. This system makes it possible to scale-up extrusion process with both starve feeding and flood feeding. Each of the scale-up criteria can be an objective function to be minimized, [...] Read more.
A novel scaling-up computer system for single screw extrusion of polymers has been developed. This system makes it possible to scale-up extrusion process with both starve feeding and flood feeding. Each of the scale-up criteria can be an objective function to be minimized, represented by single values or functional dependencies over the screw length. The basis of scaling-up is process simulation made with the use of the GSEM program (Global Screw Extrusion Model). Scaling-up is performed using the GASES program (Genetic Algorithms Screw Extrusion Scaling) based on Genetic Algorithms. Scaling-up the extrusion process has been performed to increase extrusion output according to the scaling-up criteria defined by the single parameters of unit energy consumption, polymer plasticating rate and polymer temperature, as well as by the process parameters profiles of the temperature and plasticating. The global objective function reached the lowest value for the selected process parameters, and extrusion throughput was significantly increased. Full article
Show Figures

Graphical abstract

22 pages, 2775 KiB  
Review
Optimization and Scale-Up for Polymer Extrusion
by Andrzej Nastaj and Krzysztof Wilczyński
Polymers 2021, 13(10), 1547; https://doi.org/10.3390/polym13101547 - 12 May 2021
Cited by 32 | Viewed by 7183
Abstract
A review paper is presented on optimization and scale-up for polymer extrusion, both single screw and twin screw extrusion. Optimization consists in obtaining a multidimensional space of process output variables (response surface) on the basis of an appropriate set of input data and [...] Read more.
A review paper is presented on optimization and scale-up for polymer extrusion, both single screw and twin screw extrusion. Optimization consists in obtaining a multidimensional space of process output variables (response surface) on the basis of an appropriate set of input data and searching for extreme values in this space. Scaling consists in changing the scale of the process according to specific criteria, that is, changing the process while maintaining the scaling parameters at a level that is as close to the reference process parameters as possible. It consists in minimizing the differences between the parameters characterizing the reference process and the resulting process. This may be obtained by using optimization techniques leading to the minimization of discrepancies between the parameters of scaled processes. In the paper, it was stated that optimization and scale-up based on process simulation are more effective than those based on experimentation which is time consuming and expensive. The state-of-the-art on extrusion process modeling which is the basis of optimization and scale-up has been presented. Various optimization techniques have been discussed, and the Genetic Algorithms have been identified as powerful and very efficient. Optimization and scale-up based on the process simulation using Genetic Algorithms have been broadly reviewed and discussed. It was concluded that, up to date, there is a lack of optimization studies on the counter-rotating twin screw extrusion, although the global models of this process are known. There is also a lack of process simulation-based scaling-up studies, both on the counter-rotating twin screw extrusion and on the starve fed single screw extrusion. Finally, development perspectives in this field have been discussed. Full article
Show Figures

Graphical abstract

17 pages, 4728 KiB  
Article
A Computer Model of Starve Fed Single Screw Extrusion of Wood Plastic Composites
by Krzysztof J. Wilczyński and Kamila Buziak
Polymers 2021, 13(8), 1252; https://doi.org/10.3390/polym13081252 - 12 Apr 2021
Cited by 14 | Viewed by 3721
Abstract
In this study, we present a computer model of starve fed single screw extrusion of wood plastic composites (WPC). Experimental studies have been performed on the extrusion of the polypropylene (PP) based composites with various wood fiber contents (WF). The melting mechanisms of [...] Read more.
In this study, we present a computer model of starve fed single screw extrusion of wood plastic composites (WPC). Experimental studies have been performed on the extrusion of the polypropylene (PP) based composites with various wood fiber contents (WF). The melting mechanisms of the composites in the extruder have been observed, and melting models have been proposed for partially and fully filled sections of the screw. It was observed that in the partially filled section the material is melted by conduction, as in the case of extrusion of neat polymers. On the other hand, in the fully filled section, the Tadmor melting mechanism appears, which is different compared to the melting mechanism of neat polymers at starve fed extrusion, where dispersed melting is observed. Using the melting models, the global computer model of the process has been developed which makes it possible to predict the process flow, i.e., the polymer melt temperature and pressure, the polymer melting rate, and the degree of screw filling. To build the model, the specific forward/backward procedure was developed, which consists in determining “forward” the melting profile, and “backward” the pressure and screw filling profile. The temperature profile in the melting section is computed “forward”, while “backward” in the metering section. This procedure makes it possible to solve the crucial problem of modeling of the starve fed extrusion process, which is to find the location of the point where the screw is fully filled, and the pressure is developed. The model has been tested by pressure measurements in the extruder. Full article
Show Figures

Graphical abstract

17 pages, 3963 KiB  
Article
Properties of Starve-Fed Extrusion on a Material Containing a VHMWPE Fraction
by Raffael Rathner, Davide Tranchida, Wolfgang Roland, Franz Ruemer, Klaus Buchmann, Philipp Amsüss and Georg Steinbichler
Polymers 2021, 13(6), 944; https://doi.org/10.3390/polym13060944 - 19 Mar 2021
Cited by 3 | Viewed by 2626
Abstract
Single-screw extruders are usually operated with the screw fully filled (flood-fed mode) and not partially filled (starve-fed mode). These modes result in completely different processing characteristics, and although starve-fed mode has been shown to have significant advantages, such as improved mixing and melting [...] Read more.
Single-screw extruders are usually operated with the screw fully filled (flood-fed mode) and not partially filled (starve-fed mode). These modes result in completely different processing characteristics, and although starve-fed mode has been shown to have significant advantages, such as improved mixing and melting performance, it is rarely used, and experimental studies are scarce. Here, we present extensive experimental research into starve-fed extrusion at feeding rates as low as 25%. We compared various operating parameters (e.g., residence time, pressure build-up, and melting performance) at various feeding rates and screw speeds. The results show a first insight into the performance of starve-fed extruders compared to flood-fed extruders. We explored starve-fed extrusion of a polyethylene material which contains a Very High Molecular Weight Polyethylene fraction (VHMWPE). VHMWPE offers several advantages in terms of mechanical properties, but its high viscosity renders common continuous melt processes, such as compression molding, ram extrusion and sintering, ineffective. This work shows that operating single-screw extruders in extreme starve-fed mode significantly increases residence time, melt temperature, and improves melting and that-in combination—this results in significant elongation of VHMWPE particles. Full article
Show Figures

Graphical abstract

17 pages, 4302 KiB  
Article
Optimization for Starve Fed/Flood Fed Single Screw Extrusion of Polymeric Materials
by Andrzej Nastaj and Krzysztof Wilczyński
Polymers 2020, 12(1), 149; https://doi.org/10.3390/polym12010149 - 7 Jan 2020
Cited by 19 | Viewed by 7846
Abstract
A novel computer optimization system for flood fed/starve fed single screw extrusion of polymeric materials has been developed. This coupled system allows us to optimize single screw extrusion both flood fed and starve fed. Optimization is based on process simulation which is performed [...] Read more.
A novel computer optimization system for flood fed/starve fed single screw extrusion of polymeric materials has been developed. This coupled system allows us to optimize single screw extrusion both flood fed and starve fed. Optimization is based on process simulation which is performed using global extrusion model GSEM (Global Screw Extrusion Model). The process is optimized with the use of GASEO (Genetic Algorithms Screw Extrusion Optimization) procedures which were developed using Genetic Algorithms. An example of optimization of extrusion process parameters has been presented to maximize extrusion output and minimize specific energy consumption. Optimization has been performed in a unique and original way in a coupled manner when both modes of feeding were allowed. The studies have shown that the optimal process is extrusion with starving. In this case, the global objective function reached the highest value, and extrusion throughput was relatively high and specific energy consumption was minimal. Full article
Show Figures

Graphical abstract

Back to TopTop