Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = standing surface acoustic wave (SSAW)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3174 KiB  
Article
Efficient Particle Aggregation Through SSAW Phase Modulation
by Yiming Li, Zekai Li, Zuozhi Wei, Yiran Wang, Xudong Niu and Dongfang Liang
Micromachines 2025, 16(8), 910; https://doi.org/10.3390/mi16080910 (registering DOI) - 5 Aug 2025
Abstract
In recent years, various devices utilizing surface acoustic waves (SAW) have emerged as powerful tools for manipulating particles and fluids in microchannels. Although they demonstrate a wide range of functionalities across diverse applications, existing devices still face limitations in flexibility, manipulation efficiency, and [...] Read more.
In recent years, various devices utilizing surface acoustic waves (SAW) have emerged as powerful tools for manipulating particles and fluids in microchannels. Although they demonstrate a wide range of functionalities across diverse applications, existing devices still face limitations in flexibility, manipulation efficiency, and spatial resolution. In this study, we developed a dual-sided standing surface acoustic wave (SSAW) device that simultaneously excites acoustic waves through two piezoelectric substrates positioned at the top and bottom of a microchannel. By fully exploiting the degrees of freedom offered by two pairs of interdigital transducers (IDTs) on each substrate, the system enables highly flexible control of microparticles. To explore its capability on particle aggregation, we developed a two-dimensional numerical model to investigate the influence of the SAW phase modulation on the established acoustic fields within the microchannel. Single-particle motion was first examined under the influence of the phase-modulated acoustic fields to form a reference for identifying effective phase modulation strategies. Key parameters, such as the phase changes and the duration of each phase modulation step, were determined to maximize the lateral motion while minimizing undesired vertical motion of the particle. Our dual-sided SSAW configuration, combined with novel dynamic phase modulation strategy, leads to rapid and precise aggregation of microparticles towards a single focal point. This study sheds new light on the design of acoustofluidic devices for efficient spatiotemporal particle concentration. Full article
(This article belongs to the Special Issue Surface and Bulk Acoustic Wave Devices, 2nd Edition)
Show Figures

Figure 1

16 pages, 4962 KiB  
Article
Design and Numerical Simulation of a Standing Surface Acoustic Wave-Based Microdevice for Whole Blood Cell Separation
by Maryam Hajimoradi, Moein Talebian Gevari, Keith Robert Pullen and Mohammad Mojaddam
Computation 2025, 13(2), 42; https://doi.org/10.3390/computation13020042 - 6 Feb 2025
Viewed by 1169
Abstract
Standing surface acoustic wave (SSAW)-based acoustofluidics is widely used due to its compatibility with soft materials and polymer structures. In the presence of an acoustic field, particles move either toward pressure nodes or anti-nodes according to their contrast factor. Using this technique, blood [...] Read more.
Standing surface acoustic wave (SSAW)-based acoustofluidics is widely used due to its compatibility with soft materials and polymer structures. In the presence of an acoustic field, particles move either toward pressure nodes or anti-nodes according to their contrast factor. Using this technique, blood cells with a certain characteristic can be oriented in different streamlines in a microchannel. The cumulative effect of parameters, such as the inlet velocity ratio of the buffer solution to the blood sample, acoustic frequency, voltage, and channel geometry, is key to effective separation in these microfluidic chips. In this study, simultaneous separation of white blood cells, red blood cells, and platelets in one stage is simulated by means of numerical calculations. The linear constitutive equation for the piezoelectric substrate, the Helmholtz equation for the acoustic field, and the Navier–Stokes equations for fluid mechanics are solved simultaneously to precisely capture the blood cell behavior in the SSAW-based device. The results show that whole blood cell separation can be achieved using a velocity ratio of 6.25, a resonance frequency of 8.28 MHz, and a voltage of 8.5 V in the proposed five-outlet microfluidic chip. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

17 pages, 9744 KiB  
Article
A Simulated Investigation of Lithium Niobate Orientation Effects on Standing Acoustic Waves
by Ranjith D. Janardhana and Nathan Jackson
Sensors 2023, 23(19), 8317; https://doi.org/10.3390/s23198317 - 8 Oct 2023
Cited by 4 | Viewed by 2622
Abstract
The integration of high-frequency acoustic waves with microfluidics has been gaining popularity as a method of separating cells/particles. A standing surface acoustic wave (sSAW) device produces constructive interference of the stationary waves, demonstrating an increase in cell separating efficiency without damaging/altering the cell [...] Read more.
The integration of high-frequency acoustic waves with microfluidics has been gaining popularity as a method of separating cells/particles. A standing surface acoustic wave (sSAW) device produces constructive interference of the stationary waves, demonstrating an increase in cell separating efficiency without damaging/altering the cell structure. The performance of an sSAW device depends on the applied input signal, design of the IDT, and piezoelectric properties of the substrate. This work analyzes the characteristics of a validated 3D finite element model (FEM) of LiNbO3 and the effect on the displacement components of the mechanical waves under the influence of sSAWs by considering XY-, YX-, and 1280 YX-cut LiNbO3 with varying electrode length design. We demonstrated that device performance can be enhanced by the interference of multiple waves under a combination of input signals. The results suggest that 1280 YX-cut LiNbO3 is suitable for generating higher-amplitude out-of-plane waves which can improve the effectiveness of acoustofluidics-based cell separation. Additionally, the findings showed that the length of the electrode impacts the formation of the wavefront significantly. Full article
(This article belongs to the Special Issue Cell Manipulation on a Microfluidic Device)
Show Figures

Figure 1

15 pages, 4422 KiB  
Article
Numerical Study of Particle Separation through Integrated Multi-Stage Surface Acoustic Waves and Modulated Driving Signals
by Yingqi Jiang, Jin Chen, Weipeng Xuan, Yuhao Liang, Xiwei Huang, Zhen Cao, Lingling Sun, Shurong Dong and Jikui Luo
Sensors 2023, 23(5), 2771; https://doi.org/10.3390/s23052771 - 3 Mar 2023
Cited by 6 | Viewed by 2694
Abstract
The manipulation of biomedical particles, such as separating circulating tumor cells from blood, based on standing surface acoustic wave (SSAW) has been widely used due to its advantages of label-free approaches and good biocompatibility. However, most of the existing SSAW-based separation technologies are [...] Read more.
The manipulation of biomedical particles, such as separating circulating tumor cells from blood, based on standing surface acoustic wave (SSAW) has been widely used due to its advantages of label-free approaches and good biocompatibility. However, most of the existing SSAW-based separation technologies are dedicated to isolate bioparticles in only two different sizes. It is still challenging to fractionate various particles in more than two different sizes with high efficiency and accuracy. In this work, to tackle the problems of low efficiency for multiple cell particle separation, integrated multi-stage SSAW devices with different wavelengths driven by modulated signals were designed and studied. A three-dimensional microfluidic device model was proposed and analyzed using the finite element method (FEM). In addition, the effect of the slanted angle, acoustic pressure, and the resonant frequency of the SAW device on the particle separation were systemically studied. From the theoretical results, the separation efficiency of three different size particles based on the multi-stage SSAW devices reached 99%, which was significantly improved compared with conventional single-stage SSAW devices. Full article
(This article belongs to the Special Issue Biosensors and Electrochemical Sensors)
Show Figures

Figure 1

20 pages, 5026 KiB  
Article
Numerical Modeling Using Immersed Boundary-Lattice Boltzmann Method and Experiments for Particle Manipulation under Standing Surface Acoustic Waves
by Fatima Alshehhi, Waqas Waheed, Abdulla Al-Ali, Eiyad Abu-Nada and Anas Alazzam
Micromachines 2023, 14(2), 366; https://doi.org/10.3390/mi14020366 - 31 Jan 2023
Cited by 4 | Viewed by 2267
Abstract
In this work, we employed the Immersed Boundary-Lattice Boltzmann Method (IB-LBM) to simulate the motion of a microparticle in a microchannel under the influence of a standing surface acoustic wave (SSAW). To capture the response of the target microparticle in a straight channel [...] Read more.
In this work, we employed the Immersed Boundary-Lattice Boltzmann Method (IB-LBM) to simulate the motion of a microparticle in a microchannel under the influence of a standing surface acoustic wave (SSAW). To capture the response of the target microparticle in a straight channel under the effect of the SSAW, in-house code was built in C language. The SSAW creates pressure nodes and anti-nodes inside the microchannel. Here, the target particle was forced to traverse toward the pressure node. A mapping mechanism was developed to accurately apply the physical acoustic force field in the numerical simulation. First, benchmarking studies were conducted to compare the numerical results in the IB-LBM with the available analytical, numerical, and experimental results. Next, several parametric studies were carried out in which the particle types, sizes, compressibility coefficients, and densities were varied. When the SSAW is applied, the microparticles (with a positive acoustic contrast factor) move toward the pressure node locations during their motion in the microchannel. Hence, their steady-state locations are controlled by adjusting the pressure nodes to the desired locations, such as the centerline or near the microchannel sidewalls. Moreover, the geometric parameters, such as radius, density, and compressibility of the particles affect their transient response, and the particles ultimately settle at the pressure nodes. To validate the numerical work, a microfluidic device was fabricated in-house in the cleanroom using lithographic techniques. Experiments were performed, and the target particle was moved either to the centerline or sidewalls of the channel, depending on the location of the pressure node. The steady-state placements obtained in the computational model and experiments exhibit excellent agreement and are reported. Full article
(This article belongs to the Special Issue Nano- and Microfluidic Materials and Systems)
Show Figures

Figure 1

11 pages, 2310 KiB  
Article
Bubble-Enhanced Mixing Induced by Standing Surface Acoustic Waves (SSAWs) in Microchannel
by Jingjing Zhang, Tengfei Zheng, Lin Tang, Hui Qi, Xiaoyu Wu and Linlong Zhu
Micromachines 2022, 13(8), 1337; https://doi.org/10.3390/mi13081337 - 18 Aug 2022
Cited by 9 | Viewed by 2536
Abstract
BAW-based micromixers usually achieve mixing enhancement with acoustic-induced bubbles, while SAW-based micromixers usually enhance mixing efficiency by varying the configuration of IDTs and microchannels. In this paper, bubble-enhanced acoustic mixing induced by standing surface acoustic waves (SSAWs) in a microchannel is proposed and [...] Read more.
BAW-based micromixers usually achieve mixing enhancement with acoustic-induced bubbles, while SAW-based micromixers usually enhance mixing efficiency by varying the configuration of IDTs and microchannels. In this paper, bubble-enhanced acoustic mixing induced by standing surface acoustic waves (SSAWs) in a microchannel is proposed and experimentally demonstrated. Significant enhancement in the mixing efficiency was achieved after the bubbles were stimulated in our acoustofluidic microdevice. With an applied voltage of 5 V, 50 times amplified, the proposed mixing microdevice could achieve 90.8% mixing efficiency within 60 s at a flow rate of 240 μL/h. The bubbles were generated from acoustic cavitation assisted by the temperature increase resulting from the viscous absorption of acoustic energy. Our results also suggest that a temperature increase is harmful to microfluidic devices and temperature monitoring. Regulation is essential, especially in chemical and biological applications. Full article
Show Figures

Figure 1

8 pages, 1110 KiB  
Article
Measurement of the Thermal Effect of Standing Surface Acoustic Waves in Microchannel by Fluoresence Intensity
by Yiqing Li, Shoupeng Wei and Tengfei Zheng
Micromachines 2021, 12(8), 934; https://doi.org/10.3390/mi12080934 - 6 Aug 2021
Cited by 4 | Viewed by 2196
Abstract
Temperature is an important parameter for many medical and biological applications. It is key to measuring the temperature of acoustofluidics devices for controlling the device’s temperature. In this paper, Rhodamine B was used to measure the temperature change of the microchannel induced by [...] Read more.
Temperature is an important parameter for many medical and biological applications. It is key to measuring the temperature of acoustofluidics devices for controlling the device’s temperature. In this paper, Rhodamine B was used to measure the temperature change of the microchannel induced by the SSAWs’ thermal effect in microfluidics. A thermocouple was integrated into the microfluidics device to calibrate the relationship between the fluorescent intensity ratios of Rhodamine B and the temperature. Then, the fluid temperature in the microchannel heated by the SSAWs was measured by the fluorescent signal intensity ratio in the acoustofluidics device. The fluid temperature with different input voltages and different flow rates was measured. The results show that SSAWs can heat the still fluid rapidly to 80 °c, and the flow rates will influence the temperature of the fluid. The results will be useful for precisely controlling the temperature of acoustofluidics devices. Full article
(This article belongs to the Special Issue Advances in Acoustic Microfluidics)
Show Figures

Figure 1

7 pages, 1255 KiB  
Proceeding Paper
Design and Simulation of a Point-of-Care Microfluidic Device for Acoustic Blood Cell Separation
by Fatemeh Sharifi, Armin Sedighi and Mubashar Rehman
Eng. Proc. 2020, 2(1), 76; https://doi.org/10.3390/ecsa-7-08221 - 14 Nov 2020
Cited by 5 | Viewed by 1947
Abstract
Hematology tests, considered as an initial step in the patient diagnostic process, require laboratory equipment and technicians which is a time- and labor-consuming procedure. Such facilities may be available in a few central laboratories in under-resourced countries. The growing need for low cost [...] Read more.
Hematology tests, considered as an initial step in the patient diagnostic process, require laboratory equipment and technicians which is a time- and labor-consuming procedure. Such facilities may be available in a few central laboratories in under-resourced countries. The growing need for low cost and rapid diagnostic tests contributes to point-of-care (POC) medical diagnostic devices providing convenient and rapid test tools particularly in areas with limited medical resources. In the present study, a comprehensive numerical simulation of a POC blood cell separation device (POC-BCS) has been modeled using a finite element method. Tag-less separation of blood cells, i.e., platelets, red blood cells, and white blood cells, was carried out using standing surface acoustic waves (SSAWs) generated by interdigital transducers (IDTs) located at lateral sides of the microfluidic channel. Blood sample intake along with sheath flow was introduced via two symmetrical tilted angle inlets and a middle inlet, respectively. Superposition of acoustic radiation force applied by SSAWs accompanied by drag force caused by medium flow drove the blood cells toward different path lines correlated to their size. White blood cells were sorted out in the middle outlet and red blood cells and platelets were sorted out through the separate locations of the side outlets. Each cell was then guided to their respected visualization chamber for further image processing analysis. The results of the presented numerical study would be very promising in designing and optimizing the POC blood testing device. Full article
(This article belongs to the Proceedings of 7th International Electronic Conference on Sensors and Applications)
Show Figures

Figure 1

19 pages, 3910 KiB  
Article
Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices
by Jin-Chen Hsu, Chih-Hsun Hsu and Yeo-Wei Huang
Micromachines 2019, 10(1), 52; https://doi.org/10.3390/mi10010052 - 13 Jan 2019
Cited by 32 | Viewed by 8176
Abstract
We present a numerical and experimental study of acoustophoretic manipulation in a microfluidic channel using dual-wavelength standing surface acoustic waves (SSAWs) to transport microparticles into different outlets. The SSAW fields were excited by interdigital transducers (IDTs) composed of two different pitches connected in [...] Read more.
We present a numerical and experimental study of acoustophoretic manipulation in a microfluidic channel using dual-wavelength standing surface acoustic waves (SSAWs) to transport microparticles into different outlets. The SSAW fields were excited by interdigital transducers (IDTs) composed of two different pitches connected in parallel and series on a lithium niobate substrate such that it yielded spatially superimposed and separated dual-wavelength SSAWs, respectively. SSAWs of a singltablee target wavelength can be efficiently excited by giving an RF voltage of frequency determined by the ratio of the velocity of the SAW to the target IDT pitch (i.e., f = cSAW/p). However, the two-pitch IDTs with similar pitches excite, less efficiently, non-target SSAWs with the wavelength associated with the non-target pitch in addition to target SSAWs by giving the target single-frequency RF voltage. As a result, dual-wavelength SSAWs can be formed. Simulated results revealed variations of acoustic pressure fields induced by the dual-wavelength SSAWs and corresponding influences on the particle motion. The acoustic radiation force in the acoustic pressure field was calculated to pinpoint zero-force positions and simulate particle motion trajectories. Then, dual-wavelength SSAW acoustofluidic devices were fabricated in accordance with the simulation results to experimentally demonstrate switching of SSAW fields as a means of transporting particles. The effects of non-target SSAWs on pre-actuating particles were predicted and observed. The study provides the design considerations needed for the fabrication of acoustofluidic devices with IDT-excited multi-wavelength SSAWs for acoustophoresis of microparticles. Full article
Show Figures

Figure 1

16 pages, 3883 KiB  
Article
The Separation of Blood Components Using Standing Surface Acoustic Waves (SSAWs) Microfluidic Devices: Analysis and Simulation
by Ahmed M. Soliman, Mohamed A. Eldosoky and Taha E. Taha
Bioengineering 2017, 4(2), 28; https://doi.org/10.3390/bioengineering4020028 - 29 Mar 2017
Cited by 13 | Viewed by 8595
Abstract
The separation of blood components (WBCs, RBCs, and platelets) is important for medical applications. Recently, standing surface acoustic wave (SSAW) microfluidic devices are used for the separation of particles. In this paper, the design analysis of SSAW microfluidics is presented. Also, the analysis [...] Read more.
The separation of blood components (WBCs, RBCs, and platelets) is important for medical applications. Recently, standing surface acoustic wave (SSAW) microfluidic devices are used for the separation of particles. In this paper, the design analysis of SSAW microfluidics is presented. Also, the analysis of SSAW force with Rayleigh angle effect and its attenuation in liquid-loaded substrate, viscous drag force, hydrodynamic force, and diffusion force are explained and analyzed. The analyses are provided for selecting the piezoelectric material, width of the main microchannel, working area of SAW, wavelength, minimum input power required for the separation process, and widths of outlet collecting microchannels. The design analysis of SSAW microfluidics is provided for determining the minimum input power required for the separation process with appropriated the displacement contrast of the particles.The analyses are applied for simulation the separation of blood components. The piezoelectric material, width of the main microchannel, working area of SAW, wavelength, and minimum input power required for the separation process are selected as LiNbO3, 120 μm, 1.08 mm2, 300 μm, 371 mW. The results are compared to other published results. The results of these simulations achieve minimum power consumption, less complicated setup, and high collecting efficiency. All simulation programs are built by MATLAB. Full article
Show Figures

Figure 1

18 pages, 5299 KiB  
Article
Particle Accumulation in a Microchannel and Its Reduction by a Standing Surface Acoustic Wave (SSAW)
by Yannapol Sriphutkiat and Yufeng Zhou
Sensors 2017, 17(1), 106; https://doi.org/10.3390/s17010106 - 7 Jan 2017
Cited by 23 | Viewed by 8079
Abstract
Accumulation of particles in a high concentration on a microchannel wall is a common phenomenon in a colloidal fluid. Gradual accumulation/deposition of particles can eventually obstruct the fluid flow and lead to clogging, which seriously affects the accuracy and reliability of nozzle-based printing [...] Read more.
Accumulation of particles in a high concentration on a microchannel wall is a common phenomenon in a colloidal fluid. Gradual accumulation/deposition of particles can eventually obstruct the fluid flow and lead to clogging, which seriously affects the accuracy and reliability of nozzle-based printing and causes damage to the nozzle. Particle accumulation in a 100 μm microchannel was investigated by light microscopy, and its area growth in an exponential format was used to quantify this phenomenon. The effects of the constriction angle and alginate concentration on particle accumulation were also studied. In order to reduce the clogging problem, an acoustic method was proposed and evaluated here. Numerical simulation was first conducted to predict the acoustic radiation force on the particles in the fluid with different viscosities. Interdigital transducers (IDTs) were fabricated on the LiNbO3 wafer to produce standing surface acoustic waves (SSAW) in the microchannel. It was found that the actuation of SSAW can reduce the accumulation area in the microchannel by 2 to 3.7-fold. In summary, the particle accumulation becomes significant with the increase of the constriction angle and fluid viscosity. The SSAW can effectively reduce the particle accumulation and postpone clogging. Full article
(This article belongs to the Special Issue Ultrasonic Sensors)
Show Figures

Figure 1

Back to TopTop