Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = standard polymeric formula

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5297 KB  
Article
The Validation and Discussion of a Comparative Method Based on Experiment to Determine the Effective Thickness of Composite Glass
by Dake Cao, Xiaogen Liu, Zhe Yang, Jiawei Huang, Ming Xu and Detian Wan
Buildings 2025, 15(14), 2542; https://doi.org/10.3390/buildings15142542 - 19 Jul 2025
Viewed by 593
Abstract
This study introduces and validates a comparative experiment-based method for determining the effective thickness of composite glass, including polymeric laminated glass (with polyvinyl butyral (PVB) and SentryGlas® (SGP) interlayers) and vacuum glazing. This method employs comparative four-point bending tests, defining effective thickness [...] Read more.
This study introduces and validates a comparative experiment-based method for determining the effective thickness of composite glass, including polymeric laminated glass (with polyvinyl butyral (PVB) and SentryGlas® (SGP) interlayers) and vacuum glazing. This method employs comparative four-point bending tests, defining effective thickness by equating the bending stress of a composite specimen to that of a reference monolithic glass specimen under identical loading and boundary conditions. Specimens with varying configurations (glass thicknesses of 5 mm, 6 mm and 8 mm) were tested using non-destructive four-point bending tests under a multi-stage loading protocol (100 N–1000 N). Strain rosettes measured maximum strains at each loading stage to calculate bending stress. Analysis of the bending stress state revealed that vacuum glazing and SGP laminated glass exhibit superior load-bearing capacity compared to PVB laminated glass. The proposed method successfully determined the effective thickness for both laminated glass and vacuum glazing. Furthermore, results demonstrate that employing a 12 mm monolithic reference glass provides the highest accuracy for effective thickness determination. Theoretical bending stress calculations using the effective thickness derived from the 12 mm reference glass showed less than 10% deviation from experimental values. Conversely, compared to established standards and empirical formulas, the proposed method offers superior accuracy, particularly for vacuum glazing. Additionally, the mechanical properties of the viscoelastic interlayers (PVB and SGP) were investigated through static tensile tests and dynamic thermomechanical analysis (DMA). Distinct tensile behaviors and differing time-dependent shear transfer capacities between the two interlayer materials are found out. Key factors influencing the reliability of the method are also discussed and analyzed. This study provides a universally practical and applicable solution for accurate and effective thickness estimation in composite glass design. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 3082 KB  
Article
New Test Methods for Extractables in No-Wipe Topcoat Gel Polish: Extraction and Quantitation of Uncured Monomers After UV Curing
by Laurisa London-Dawodu, Xuejun J. Yin and Sunan Yuvavanich
Cosmetics 2025, 12(3), 89; https://doi.org/10.3390/cosmetics12030089 - 1 May 2025
Viewed by 1580
Abstract
Background: Nail gels are decorative fingernail coatings based on (meth)acrylates that are photopolymerized on the nail surface. After polymerization, these coatings typically retain an uncured layer of monomers at the air interface due to oxygen inhibition, which may pose a risk of skin [...] Read more.
Background: Nail gels are decorative fingernail coatings based on (meth)acrylates that are photopolymerized on the nail surface. After polymerization, these coatings typically retain an uncured layer of monomers at the air interface due to oxygen inhibition, which may pose a risk of skin sensitization unless removed. No-wipe topcoats are formulated to address this issue by curing fully; however, no standard test method exists to verify a complete cure. This study presents a method to quantify residual uncured traces of several common nail gel monomers extracted from polymerized commercial no-wipe nail gels. Method: Commercially available no-wipe nail gels were formed into films of controlled thickness and polymerized using a standard UV-curing nail lamp. Solvent extraction was employed to eliminate residual uncured monomers, namely diethylene glycol dimethacrylate (DEGDMA), isobornyl acrylate (IBOA), and 2-hydroxyethyl methacrylate (HEMA). These monomers were quantified utilizing GC-FID and HPLC techniques. Method validation was conducted with samples of known monomer identity and concentration, thereby establishing specificity, linearity, precision, and detection limits. Results: Validated test protocols were established for the analysis of residual uncured traces of three commonly used monomers in nail gel coatings. In all instances, levels of monomer residue in a cured gel coating were found to range from 56 µg/g to 800 µg/g. Tests conducted on commercial products indicated that levels of these monomers fell within the expected normal ranges for such products. Conclusions: Through the utilization of two chromatographic techniques, three analytical methods were established for the simultaneous determination of ingredient concentrations and residual monomer quantities in unreacted bulk formula and cured UV-gel film. These methods and the resultant data facilitate the evaluation of curing completeness, which is essential for product development and safety assessments. Full article
(This article belongs to the Section Cosmetic Technology)
Show Figures

Figure 1

15 pages, 833 KB  
Article
Use of Oligomeric Formulas in Malabsorption: A Delphi Study and Consensus
by Carmelo Diéguez Castillo, Maryam Sidahi Serrano, Andrea Martín Aguilar and Daniel De Luis Román
Nutrients 2025, 17(9), 1426; https://doi.org/10.3390/nu17091426 - 24 Apr 2025
Viewed by 1861
Abstract
Background: Malabsorption syndrome is characterized by chronic diarrhea, abdominal distension, and malnutrition, thereby complicating its diagnosis and treatment. Oligomeric enteral formulas, designed to facilitate absorption in patients with compromised bowel function, have shown clinical efficacy, though their implementation lacks standardization due to [...] Read more.
Background: Malabsorption syndrome is characterized by chronic diarrhea, abdominal distension, and malnutrition, thereby complicating its diagnosis and treatment. Oligomeric enteral formulas, designed to facilitate absorption in patients with compromised bowel function, have shown clinical efficacy, though their implementation lacks standardization due to the lack of uniform protocols. Objective: To establish a multidisciplinary consensus on the use of oligomeric formulas in patients with malabsorption using a Delphi methodology. Material and Method: A Delphi study was conducted with 156 specialists in endocrinology, gastroenterology, oncology, and internal medicine. Two rounds of structured surveys assessed clinical practices, associated symptoms, and the use of oligomeric enteral formulas. Data were analyzed using descriptive statistics and non-parametric tests, defining consensus with a median of ≥7 and an interquartile range of ≤3. Likewise, a Median (MED) score of ≤3 was considered as a consensus to reject the statement, while an Interquartile range (IQR) of ≥4 or a MED of 4–6 was considered as no agreement. These statements were reviewed and included in the second round. Results: Screening for malnutrition is widely supported (79%), but only 38% of participants reported having specific management protocols. Symptoms such as abdominal distension, abdominal pain, and diarrhea were identified as key predictors of intolerance to polymeric formulas, establishing oligomeric enteral formulas as first choice in these cases. In addition, the effectiveness of an approach that progresses from oligomeric to polymeric enteral formulas once symptoms have stabilized was highlighted. The need for standardized protocols was recognized as a priority to guide nutritional assessment and treatment in patients with malabsorption. Conclusions: This consensus reinforces the importance of implementing specific clinical protocols for the nutritional management of malabsorption, including the initial use of oligomeric enteral formulas in patients with severe symptoms and their controlled transition to polymeric enteral formulas. Full article
Show Figures

Figure 1

21 pages, 9651 KB  
Article
Polymyxin B Peptide Hydrogel Coating: A Novel Approach to Prevent Ventilator-Associated Pneumonia
by Milan Wouters, Laurence Van Moll, Linda De Vooght, Emilia Choińska, Joanna Idaszek, Karol Szlązak, Marcin K. Heljak, Wojciech Święszkowski and Paul Cos
Int. J. Mol. Sci. 2024, 25(19), 10269; https://doi.org/10.3390/ijms251910269 - 24 Sep 2024
Cited by 1 | Viewed by 2581
Abstract
Ventilator-associated pneumonia (VAP) remains one of the most common hospital-acquired infections (HAI). Considering the complicated diagnosis and the lack of effective treatment, prophylactic measures are suggested as the new standard to prevent the disease. Although VAP often manifests a polymicrobial nature, Pseudomonas aeruginosa [...] Read more.
Ventilator-associated pneumonia (VAP) remains one of the most common hospital-acquired infections (HAI). Considering the complicated diagnosis and the lack of effective treatment, prophylactic measures are suggested as the new standard to prevent the disease. Although VAP often manifests a polymicrobial nature, Pseudomonas aeruginosa remains one of the pathogens associated with the highest morbidity and mortality rates within these mechanically ventilated patients. In this paper, we report on the development of an antibacterial hydrogel coating using the polymyxin B (PMB) peptide to prevent bacterial adhesion to the polymeric substrate. We fully characterized the properties of the coating using atomic force microscopy (AFM), scanning electron microscopy (SEM), wettability analyses and Fourier-transform infrared (FTIR) and Raman spectroscopy. Furthermore, several biological assays confirmed the antibacterial and anti-biofilm effect of the tubing for at least 8 days against P. aeruginosa. On top of that, the produced coating is compliant with the requirements regarding cytocompatibility stated in the ISO (International Organization for Standardization) 10993 guidelines and an extended release of PMB over a period of at least 42 days was detected. In conclusion, this study serves as a foundation for peptide-releasing hydrogel formulas in the prevention of VAP. Full article
(This article belongs to the Special Issue Antimicrobial and Antiviral Peptides)
Show Figures

Graphical abstract

17 pages, 7043 KB  
Article
The Influence of the Flexibility of a Polymeric Adhesive Layer on the Mechanical Response of a Composite Reinforced Concrete Slab and a Reinforced Concrete Beam Girder
by Paweł Szeptyński, Jan Grzegorz Pochopień, Dorota Jasińska and Arkadiusz Kwiecień
Polymers 2024, 16(3), 444; https://doi.org/10.3390/polym16030444 - 5 Feb 2024
Cited by 7 | Viewed by 2237
Abstract
This study addresses the challenges of modeling flexible connections in composite structures employing a polymeric adhesive layer. These types of connections provide a more uniform stress distribution compared to conventional rigid connectors. However, they lack standardized design rules and still require much research [...] Read more.
This study addresses the challenges of modeling flexible connections in composite structures employing a polymeric adhesive layer. These types of connections provide a more uniform stress distribution compared to conventional rigid connectors. However, they lack standardized design rules and still require much research to sufficiently comprehend their properties. The novelty of this research lies in proposing an analytical solution to address these issues. Its aim is to investigate the influence of the stiffness of the polymer adhesive on the girder’s deflection and on the maximum stresses in both the adhesive and concrete. The analyzed composite structure consists of a reinforced concrete (RC) slab and an RC beam connected with a layer of flexible polyurethane (FPU) adhesive. Analytical and numerical approaches for the description of the mechanical response of a composite bridge girder are presented. Another objective is to validate the analytical design formulas using 3D nonlinear numerical analysis, both in the case of uncracked and cracked concrete. Seven types of FPUs are tested in the uniaxial tension test, each examined at five strain rates. The obtained data is used to predict the mechanical response of the considered girder using finite element analysis (FEA) as well as with a simplified one-dimensional composite beam theory. Fair agreement is found between the FEA results and theoretical predictions. A comparison of the results obtained for these two models is performed, and the similarities and discrepancies are highlighted and discussed. Full article
(This article belongs to the Special Issue Polymer Composites for Structural Strengthening)
Show Figures

Figure 1

15 pages, 1368 KB  
Article
The Use of Membrane Filtration to Increase Native Whey Proteins in Infant Formula
by Yihong Chen, Michael Callanan, Colm Shanahan, John Tobin, Luke F. Gamon, Michael J. Davies, Linda Giblin and André Brodkorb
Dairy 2021, 2(4), 515-529; https://doi.org/10.3390/dairy2040041 - 23 Sep 2021
Cited by 13 | Viewed by 6308
Abstract
The introduction of membrane filtration during infant milk formula (IMF) processing represents an innovative approach to increasing native protein content compared to standard IMF. The objective of this study was to compare IMF powder produced using a standard process and IMF produced from [...] Read more.
The introduction of membrane filtration during infant milk formula (IMF) processing represents an innovative approach to increasing native protein content compared to standard IMF. The objective of this study was to compare IMF powder produced using a standard process and IMF produced from raw bovine skim milk with added whey protein isolate using a split-stream process incorporating a ceramic 1.4 μm filter followed by a polyvinylidene difluoride polymeric 0.2 μm filter. Retentates from 0.2 μm microfiltration (MF) were blended with fat, lactose, and minerals and subsequently high-temperature treated (125 °C × 5 s). The heat-treated retentate was merged with the permeate from the 0.2 μm MF, homogenised, and spray-dried (referred to as membrane-filtered IMF or MEM-IMF). A control IMF was also produced using standard treatment (referred to as high-temperature IMF or HT-IMF) without membrane filtration. Both IMF products were characterised by high-performance liquid chromatography, particle size, and enzyme activity assays. MEM-IMF powder had significantly higher amounts of native (1.1 g per 100 g powder) and monomeric (1.48 g per 100 g powder) whey proteins when compared to 0.18 and 0.46 g per 100 g powder in HT-IMF, respectively. MEM-IMF also exhibited a lower degree of protein aggregation compared to HT-IMF. Comparison of microbial and Maillard by-products markers demonstrated that a safe IMF product could be produced at scale, although levels of the Maillard by-product marker, carboxymethyl-lysine, were not significantly reduced in MEM-IMF. This study demonstrates how membrane filtration can be used to retain native proteins during IMF manufacture. Full article
Show Figures

Figure 1

13 pages, 3651 KB  
Article
Biodegradable Nanofibrous Membranes for Medical and Personal Protection Applications: Manufacturing, Anti-COVID-19 and Anti-Multidrug Resistant Bacteria Evaluation
by Latifah Abdullah Alshabanah, Mohamed Hagar, Laila A. Al-Mutabagani, Ghada M. Abozaid, Salwa M. Abdallah, Hoda Ahmed, Ahmed H. Hassanin and Nader Shehata
Materials 2021, 14(14), 3862; https://doi.org/10.3390/ma14143862 - 10 Jul 2021
Cited by 19 | Viewed by 3385
Abstract
Biodegradable nanofibrous hybrid membranes of polyvinyl alcohol (PVA) with ZnO and CuO nanoparticles were manufactured and characterized, and their anti-COVID-19 and anti-multidrug resistant bacteria activities were also evaluated. The morphological structures of the prepared PVA composites nanofibers were observed by scanning electron microscope [...] Read more.
Biodegradable nanofibrous hybrid membranes of polyvinyl alcohol (PVA) with ZnO and CuO nanoparticles were manufactured and characterized, and their anti-COVID-19 and anti-multidrug resistant bacteria activities were also evaluated. The morphological structures of the prepared PVA composites nanofibers were observed by scanning electron microscope (SEM), which revealed a homogenous pattern of the developed nanofibers, with an average fibrous diameter of 200–250 nm. Moreover, the results of the SEM showed that the fiber size changed with the type and the concentration of the metal oxide. Moreover, the antiviral and antibacterial potential capabilities of the developed nanofibrous membranes were tested in blocking the viral fusion of SARS-COV-2, as a representative activity for COVID-19 deactivation, as well as for their activity against a variety of bacterial strains, including multi-drug resistant bacteria (MDR). The results revealed that ZnO loaded nanofibers were more potent antiviral agents than their CuO analogues. This antiviral action was attributed to the fact that inorganic metallic compounds have the ability to extract hydrogen bonds with viral proteins, causing viral rupture or morphological changes. On the other hand, the anti-multi-drug resistant activity of the prepared nanofibers was also evaluated using two techniques; the standard test method for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic contact conditions and the standard test method for determining the activity of incorporated antimicrobial agents in polymeric or hydrophobic materials. Both techniques proved the superiority of the ZnO loaded nanofibers over the CuO loaded fibers. The results of the antiviral and antibacterial tests showed the effectiveness of such nanofibrous formulas, not only for medical applications, but also for the production of personal protection equipment, such as gowns and textiles. Full article
Show Figures

Figure 1

9 pages, 1846 KB  
Article
On Plowing Frictional Behavior during Scratch Testing: A Comparison between Experimental and Theoretical/Numerical Results
by Per-Lennart Larsson
Crystals 2019, 9(1), 33; https://doi.org/10.3390/cryst9010033 - 11 Jan 2019
Cited by 2 | Viewed by 3387
Abstract
Scratch testing is a contact mechanics based nondestructive testing method that, if correctly evaluated, can give a lot of information about the material and tribological behavior of a material. In contrast to the situation with another contact-based method, indentation testing, wear characteristics can [...] Read more.
Scratch testing is a contact mechanics based nondestructive testing method that, if correctly evaluated, can give a lot of information about the material and tribological behavior of a material. In contrast to the situation with another contact-based method, indentation testing, wear characteristics can also be investigated, for example. In order to get results of practical importance from a scratch test, it is necessary to have evaluation formulae available. Indeed, such formulae exist for scratch testing but can be substantially influenced by frictional effects. For this reason, closed-form analytical relations have been suggested for the purpose of accounting for such effects during scratching and in particular the plowing frictional effect. As a major benefit, these relations can also be of assistance during material characterization through scratch testing. However, the proposed existing relations are based solely on theoretical/numerical analyses and, remembering that the scratch test of course is an experimental approach, verification by experiments is a necessity. Such a task is performed in the present study and it is shown that, based on standard contact global properties, the relations are accurate for most polymeric materials but could also be used for some metallic ones. Full article
Show Figures

Figure 1

11 pages, 2917 KB  
Article
Humidity Measurement in Carbon Dioxide with Capacitive Humidity Sensors at Low Temperature and Pressure
by Andreas Lorek and Jacek Majewski
Sensors 2018, 18(8), 2615; https://doi.org/10.3390/s18082615 - 9 Aug 2018
Cited by 16 | Viewed by 6089
Abstract
In experimental chambers for simulating the atmospheric near-surface conditions of Mars, or in situ measurements on Mars, the measurement of the humidity in carbon dioxide gas at low temperature and under low pressure is needed. For this purpose, polymer-based capacitive humidity sensors are [...] Read more.
In experimental chambers for simulating the atmospheric near-surface conditions of Mars, or in situ measurements on Mars, the measurement of the humidity in carbon dioxide gas at low temperature and under low pressure is needed. For this purpose, polymer-based capacitive humidity sensors are used; however, these sensors are designed for measuring the humidity in the air on the Earth. The manufacturers provide only the generic calibration equation for standard environmental conditions in air, and temperature corrections of humidity signal. Because of the lack of freely available information regarding the behavior of the sensors in CO2, the range of reliable results is limited. For these reasons, capacitive humidity sensors (Sensirion SHT75) were tested at the German Aerospace Center (DLR) in its Martian Simulation Facility (MSF). The sensors were investigated in cells with a continuously humidified carbon dioxide flow, for temperatures between −70 °C and 10 °C, and pressures between 10 hPa and 1000 hPa. For 28 temperature–pressure combinations, the sensor calibration equations were calculated together with temperature–dependent formulas for the coefficients of the equations. The characteristic curves obtained from the tests in CO2 and in air were compared for selected temperature–pressure combinations. The results document a strong cross-sensitivity of the sensors to CO2 and, compared with air, a strong pressure sensitivity as well. The reason could be an interaction of the molecules of CO2 with the adsorption sites on the thin polymeric sensing layer. In these circumstances, an individual calibration for each pressure with respect to temperature is required. The performed experiments have shown that this kind of sensor can be a suitable, lightweight, and relatively inexpensive choice for applications in harsh environments such as on Mars. Full article
Show Figures

Figure 1

8 pages, 401 KB  
Article
Standard Polymeric Formula Tube Feeding in Neurologically Impaired Children: A Five-Year Retrospective Study
by Valeria Dipasquale, Maria Ausilia Catena, Sabrina Cardile and Claudio Romano
Nutrients 2018, 10(6), 684; https://doi.org/10.3390/nu10060684 - 28 May 2018
Cited by 27 | Viewed by 6428
Abstract
Malnutrition is frequent in neurologically impaired (NI) children. Enteral feeding via gastrostomy tube is increasingly being used to provide adequate nutrition. Our aim was to assess the outcomes of exclusive gastrostomy tube feeding with standard polymeric formula in children with NI, severe oro-motor [...] Read more.
Malnutrition is frequent in neurologically impaired (NI) children. Enteral feeding via gastrostomy tube is increasingly being used to provide adequate nutrition. Our aim was to assess the outcomes of exclusive gastrostomy tube feeding with standard polymeric formula in children with NI, severe oro-motor dysfunction, and malnutrition, and to investigate the role of the underlying NI-associated disease. A five-year retrospective study from January 2013 to November 2017 was conducted. The primary aim was to assess the nutritional outcomes of exclusive gastrostomy tube feeding with standard polymeric formula in malnourished NI children. The secondary aim was to investigate gastrostomy complications and the impact of the underlying NI-associated disease on the nutritional outcomes. We enrolled 110 consecutive children with NI. Of these patients, 34.5% (N = 38) were categorized as malnourished and started exclusive enteral feeding with a standard (1.0 kcal/mL) polymeric formula (Nutrini, Nutricia) after percutaneous endoscopic gastrostomy (PEG) placement. Seventy-three percent of patients (N = 28) had cerebral palsy (CP); other diagnoses included metabolic (13%, N = 5) and genetic (13%, N = 5) diseases. Tricep skinfold thickness had significantly improved in all patients at 12-months follow-up, while body weight and body mass index showed significant increases mainly in children with CP. No serious complications occurred. We found that standard polymeric formula via gastrostomy tube represents a safe and efficient nutritional intervention in children with NI and malnutrition. Full article
(This article belongs to the Special Issue Nutrition in Pediatric Gastroenterology: Selected Papers from SIGENP)
Show Figures

Figure 1

Back to TopTop