Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = splinted skin wound model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4106 KiB  
Article
Comparison of the Therapeutic Effects of Native and Anionic Nanofibrillar Cellulose Hydrogels for Full-Thickness Skin Wound Healing
by Raili Koivuniemi, Qian Xu, Jasmi Snirvi, Irene Lara-Sáez, Arto Merivaara, Kari Luukko, Markus Nuopponen, Wenxin Wang and Marjo Yliperttula
Micro 2021, 1(2), 194-214; https://doi.org/10.3390/micro1020015 - 11 Oct 2021
Cited by 9 | Viewed by 6431
Abstract
Nanofibrillar cellulose (NFC)-derived dressings such as films, hydrogels, and aerogels are one of the favorable materials for wound healing due to their proper mechanical properties and water holding ability. However, the therapeutic differences between native and anionic NFC materials are rarely studied. In [...] Read more.
Nanofibrillar cellulose (NFC)-derived dressings such as films, hydrogels, and aerogels are one of the favorable materials for wound healing due to their proper mechanical properties and water holding ability. However, the therapeutic differences between native and anionic NFC materials are rarely studied. In this report, we compared the differences and addressed the regenerative potential of native and anionic wood-derived NFC hydrogels for wound treatment. In vitro characteristics of the hydrogels were detected using scanning electron microscopy, rheological measurements, and swelling and hemolytic activity assays. Skin regeneration at an early stage after hydrogel treatment was analyzed using an in vivo splinted excisional full-thickness skin wound model in C57BL/6 mice. Both native NFC and anionic NFC (ANFC) hydrogel with differing mechanical and surface properties were shown to be biocompatible. Surprisingly, wounds treated with NFC and ANFC hydrogel did not show any statistical difference compared with control wounds and progressed through normal wound closure, inflammatory response, re-epithelialization, vascularization, and tissue maturation with no signs of fibrosis. The data show here for the first time the therapeutic performance of native and anionic NFC hydrogel in a wound mimicking human wound healing mechanisms. The mechanical properties of native and anionic NFC hydrogels such as the capability to modify material stiffness may also prove to be valuable in the management of wounds in the future. Full article
(This article belongs to the Section Microscale Biology and Medicines)
Show Figures

Figure 1

16 pages, 5919 KiB  
Article
Controlled Release of the α-Tocopherol-Derived Metabolite α-13′-Carboxychromanol from Bacterial Nanocellulose Wound Cover Improves Wound Healing
by Jessica Hoff, Berit Karl, Jana Gerstmeier, Uwe Beekmann, Lisa Schmölz, Friedemann Börner, Dana Kralisch, Michael Bauer, Oliver Werz, Dagmar Fischer, Stefan Lorkowski and Adrian T. Press
Nanomaterials 2021, 11(8), 1939; https://doi.org/10.3390/nano11081939 - 28 Jul 2021
Cited by 20 | Viewed by 3325
Abstract
Inflammation is a hallmark of tissue remodeling during wound healing. The inflammatory response to wounds is tightly controlled and well-coordinated; dysregulation compromises wound healing and causes persistent inflammation. Topical application of natural anti-inflammatory products may improve wound healing, in particular under chronic pathological [...] Read more.
Inflammation is a hallmark of tissue remodeling during wound healing. The inflammatory response to wounds is tightly controlled and well-coordinated; dysregulation compromises wound healing and causes persistent inflammation. Topical application of natural anti-inflammatory products may improve wound healing, in particular under chronic pathological conditions. The long-chain metabolites of vitamin E (LCM) are bioactive molecules that mediate cellular effects via oxidative stress signaling as well as anti-inflammatory pathways. However, the effect of LCM on wound healing has not been investigated. We administered the α-tocopherol-derived LCMs α-13′-hydroxychromanol (α-13′-OH) and α-13′-carboxychromanol (α-13′-COOH) as well as the natural product garcinoic acid, a δ-tocotrienol derivative, in different pharmaceutical formulations directly to wounds using a splinted wound mouse model to investigate their effects on the wounds’ proinflammatory microenvironment and wound healing. Garcinoic acid and, in particular, α-13′-COOH accelerated wound healing and quality of the newly formed tissue. We next loaded bacterial nanocellulose (BNC), a valuable nanomaterial used as a wound dressing with high potential for drug delivery, with α-13′-COOH. The controlled release of α-13′-COOH using BNC promoted wound healing and wound closure, mainly when a diabetic condition was induced before the injury. This study highlights the potential of α-13′-COOH combined with BNC as a potential active wound dressing for the advanced therapy of skin injuries. Full article
(This article belongs to the Special Issue Nanocellulose for Drug Delivery: From Design to Application)
Show Figures

Figure 1

16 pages, 4389 KiB  
Article
Sphingosine-1-Phosphate Facilitates Skin Wound Healing by Increasing Angiogenesis and Inflammatory Cell Recruitment with Less Scar Formation
by Masayo Aoki, Hiroaki Aoki, Partha Mukhopadhyay, Takuya Tsuge, Hirofumi Yamamoto, Noriko M. Matsumoto, Eri Toyohara, Yuri Okubo, Rei Ogawa and Kazuaki Takabe
Int. J. Mol. Sci. 2019, 20(14), 3381; https://doi.org/10.3390/ijms20143381 - 10 Jul 2019
Cited by 39 | Viewed by 6589
Abstract
Wound healing starts with the recruitment of inflammatory cells that secrete wound-related factors. This step is followed by fibroblast activation and tissue construction. Sphingosine-1-phosphate (S1P) is a lipid mediator that promotes angiogenesis, cell proliferation, and attracts immune cells. We investigated the roles of [...] Read more.
Wound healing starts with the recruitment of inflammatory cells that secrete wound-related factors. This step is followed by fibroblast activation and tissue construction. Sphingosine-1-phosphate (S1P) is a lipid mediator that promotes angiogenesis, cell proliferation, and attracts immune cells. We investigated the roles of S1P in skin wound healing by altering the expression of its biogenic enzyme, sphingosine kinase-1 (SphK1). The murine excisional wound splinting model was used. Sphingosine kinase-1 (SphK1) was highly expressed in murine wounds and that SphK1−/− mice exhibit delayed wound closure along with less angiogenesis and inflammatory cell recruitment. Nanoparticle-mediated topical SphK1 overexpression accelerated wound closure, which associated with increased angiogenesis, inflammatory cell recruitment, and various wound-related factors. The SphK1 overexpression also led to less scarring, and the interaction between transforming growth factor (TGF)-β1 and S1P receptor-2 (S1PR2) signaling is likely to play a key role. In summary, SphK1 play important roles to strengthen immunity, and contributes early wound healing with suppressed scarring. S1P can be a novel therapeutic molecule with anti-scarring effect in surgical, trauma, and chronic wound management. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration: Mechanisms, Signaling)
Show Figures

Graphical abstract

14 pages, 8937 KiB  
Article
Acceleration Mechanisms of Skin Wound Healing by Autologous Micrograft in Mice
by Shiro Jimi, Masahiko Kimura, Francesco De Francesco, Michele Riccio, Shuuji Hara and Hiroyuki Ohjimi
Int. J. Mol. Sci. 2017, 18(8), 1675; https://doi.org/10.3390/ijms18081675 - 2 Aug 2017
Cited by 43 | Viewed by 7656
Abstract
A micrograft technique, which minces tissue into micro-fragments >50 μm, has been recently developed. However, its pathophysiological mechanisms in wound healing are unclear yet. We thus performed a wound healing study using normal mice. A humanized mouse model of a skin wound with [...] Read more.
A micrograft technique, which minces tissue into micro-fragments >50 μm, has been recently developed. However, its pathophysiological mechanisms in wound healing are unclear yet. We thus performed a wound healing study using normal mice. A humanized mouse model of a skin wound with a splint was used. After total skin excision, tissue micro-fragments obtained by the Rigenera protocol were infused onto the wounds. In the cell tracing study, GFP-expressing green mice and SCID mice were used. Collagen stains including Picrosirius red (PSR) and immunohistological stains for α-smooth muscle actin (αSMA), CD31, transforming growth factor-β1 (TGF-β1) and neutrophils were evaluated for granulation tissue development. GFP-positive cells remained in granulation tissue seven days after infusion, but vanished after 13 days. Following the infusion of the tissue micrograft solution onto the wound, TGF-β1 expression was transiently upregulated in granulation tissue in the early phase. Subsequently, αSMA-expressing myofibroblasts increased in number in thickened granulation tissue with acceleration of neovascularization and collagen matrix maturation. On such granulation tissue, regenerative epithelial healing progressed, resulting in wound area reduction. Alternative alteration after the micrograft may have increased αSMA-expressing myofibroblasts in granulation tissue, which may act on collagen accumulation, neovascularization and wound contraction. All of these changes are favorable for epithelial regeneration on wound. Full article
Show Figures

Graphical abstract

Back to TopTop