Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = spiral phase plates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 22994 KB  
Article
Design of a Proton Exchange Membrane Electrolyzer
by Torsten Berning
Hydrogen 2025, 6(2), 30; https://doi.org/10.3390/hydrogen6020030 - 2 May 2025
Cited by 2 | Viewed by 6914
Abstract
A novel design of a proton exchange membrane electrolyzer is presented. In contrast to previous designs, the flow field plates are round and oriented horizontally with the feed water entering from a central hole and spreading evenly outward over the anode flow field [...] Read more.
A novel design of a proton exchange membrane electrolyzer is presented. In contrast to previous designs, the flow field plates are round and oriented horizontally with the feed water entering from a central hole and spreading evenly outward over the anode flow field in radial, interdigitated flow channels. The cathode flow field consists of a spiral channel with an outlet hole near the outside of the bipolar plate. This results in anode and cathode flow channels that run perpendicular to avoid shear stresses. The novel sealing concept requires only o-rings, which press against the electrolyte membrane and are countered by circular gaskets that are placed over the flow channels to prevent the membrane from penetrating the channels, which makes for a much more economical sealing concept compared to prior designs using custom-made gaskets. Hydrogen leaves the electrolyzer through a vertical outward pipe placed off-center on top of the electrolyzer. The electrolyzer stack is housed in a cylinder to capture the oxygen and water vapor, which is then guided into a heat exchanger section, located underneath the electrolyzer partition. The function of the heat exchanger is to preheat the incoming fresh water and condense the escape water, thus improving the efficiency. It also serves as internal phase separator in that a level sensor controls the water level and triggers a recirculation pump for the condensate, while the oxygen outlet is located above the water level and can be connected to a vacuum pump to allow for electrolyzer operation at sub-ambient pressure to further increase efficiency and/or reduce the iridium loading. Full article
Show Figures

Figure 1

13 pages, 10496 KB  
Article
A Method for Fingerprint Edge Enhancement Based on Radial Hilbert Transform
by Baiyang Wu, Shuo Zhang, Weinan Gao, Yong Bi and Xiaosong Hu
Electronics 2024, 13(19), 3886; https://doi.org/10.3390/electronics13193886 - 30 Sep 2024
Cited by 2 | Viewed by 2417
Abstract
Fingerprints play a significant role in various fields due to their uniqueness. In order to effectively utilize fingerprint information, it is necessary to enhance image quality. This paper introduces a method based on Radial Hilbert transform (RHLT), which simulates the vortex filter using [...] Read more.
Fingerprints play a significant role in various fields due to their uniqueness. In order to effectively utilize fingerprint information, it is necessary to enhance image quality. This paper introduces a method based on Radial Hilbert transform (RHLT), which simulates the vortex filter using the point spread function (PSF) of spiral phase plate (SPP) with a topological charge l=1, for fingerprint edge enhancement. The experimental results show that the processed fingerprint image has more distinct edges, with an increase in information entropy and average gradient. Unlike classical edge detection operators, the fingerprint edge image obtained by the RHLT method exhibits a lower mean square error (MSE) and a higher peak signal-to-noise ratio (PSNR). This indicates that the RHLT method provides more accurate edge detection and demonstrates higher noise-resistance capabilities. Due to its ability to highlight edge information while preserving more original features, this method has great application potential in fingerprint image processing. Full article
(This article belongs to the Section Bioelectronics)
Show Figures

Figure 1

9 pages, 1811 KB  
Article
Numerical Analysis and Verification of Off-Axis Double Vortex Beams
by Jianqiang Ye, Yuxia Zhou, Palidan Aierken, Xining Yang, Zhaoxue Li and Taximaiti Yusufu
Photonics 2024, 11(2), 123; https://doi.org/10.3390/photonics11020123 - 29 Jan 2024
Viewed by 1955
Abstract
Vortex beams are unique in that they have annular spatial profiles and carry orbital angular momentum. This has led to their use in applications including laser processing, microparticle manipulation and signal transmission. Off-axis vortex beams, which may be considered a subset of vortex [...] Read more.
Vortex beams are unique in that they have annular spatial profiles and carry orbital angular momentum. This has led to their use in applications including laser processing, microparticle manipulation and signal transmission. Off-axis vortex beams, which may be considered a subset of vortex beams, display a broader spectrum of physical characteristics in comparison with their conventional (integer-order) counterparts. In this work, we derive the equations which describe the intensity distribution of off-axis vortex beams and use these to theoretically model their spatial profile. These models are supported by experimental generation of both integer and off-axis vortex beams, and the presence of orbital angular momentum is investigated through the use of the cylindrical lens transformation method. Full article
(This article belongs to the Special Issue Coherence Manipulation, Propagation and Applications of Vortex Beam)
Show Figures

Figure 1

17 pages, 53310 KB  
Article
Generation of Perfect Vortex Beams with Complete Control over the Ring Radius and Ring Width
by Xin Tao, Yong Liang, Shirui Zhang, Yueqing Li, Minghao Guo and Peng Li
Photonics 2023, 10(12), 1382; https://doi.org/10.3390/photonics10121382 - 15 Dec 2023
Cited by 8 | Viewed by 4620
Abstract
We have experimentally created perfect vortex beams (PVBs) by Fourier transformation of Bessel–Gaussian vortex beams, which are generated by modulating the fundamental Gaussian beam with the spiral phase plates and the axicons, respectively. Although the method has been used many times by other [...] Read more.
We have experimentally created perfect vortex beams (PVBs) by Fourier transformation of Bessel–Gaussian vortex beams, which are generated by modulating the fundamental Gaussian beam with the spiral phase plates and the axicons, respectively. Although the method has been used many times by other authors, as far as we know, few people pay attention to the quantitative relationship between the control parameters of the PVB and ring width. The effects of the waist radius of the fundamental Gaussian beam wg, base angle of the axicon γ, and focal length of the lens f on the spot parameters (ring radius ρ, and ring half-width Δ) of PVB are systematically studied. The beam pattern of the generated Bessel–Gaussian beam for different propagation distances behind the axicon and the fundamental Gaussian beam wg is presented. We showed experimentally that the ring radius ρ increases linearly with the increase of the base angle γ and focal length f, while the ring half-width Δ decreases with the increase of the fundamental beam waist radius wg, and increases with enlarging the focal length f. We confirmed the topological charge (TC) of the PVB by the interferogram between the PVB and the reference fundamental Gaussian beam. We also studied experimentally that the size of the generated PVB in the Fourier plane is independent of the TCs. Our approach to generate the PVB has the advantages of high-power tolerance and high efficiency. Full article
Show Figures

Figure 1

20 pages, 4240 KB  
Review
Generation of Orbital Angular Momentum Light by Patterning Azopolymer Thin Films
by Temitope M. Olaleye, Maria Raposo and Paulo A. Ribeiro
Photonics 2023, 10(12), 1319; https://doi.org/10.3390/photonics10121319 - 29 Nov 2023
Cited by 2 | Viewed by 2635
Abstract
Orbital angular momentum (OAM) encoding is a promising technique to boost data transmission capacity in optical communications. Most recently, azobenzene films have gained attention as a versatile tool for creating and altering OAM-carrying beams. Unique features of azobenzene films make it possible to [...] Read more.
Orbital angular momentum (OAM) encoding is a promising technique to boost data transmission capacity in optical communications. Most recently, azobenzene films have gained attention as a versatile tool for creating and altering OAM-carrying beams. Unique features of azobenzene films make it possible to control molecular alignment through light-induced isomerization about the azo bond. This feature enables the fabrication of diffractive optical devices such as spiral phase plates and holograms by accurately imprinting a phase profile on the incident light. By forming azobenzene sheets into diffractive optical elements, such as spiral phase plates, one can selectively create OAM-carrying beams. Due to the helical wavefront and phase variation shown by these beams, multiple distinct channels can be encoded within a single optical beam. This can significantly increase the data transmission capacity of optical communication systems with this OAM multiplexing technique. Additionally, holographic optical components made from azobenzene films can be used to build and reconstruct intricate wavefronts. It is possible to create OAM-based holograms by imprinting holographic designs on azobenzene films, which makes it simpler to control and shape optical beams for specific communication requirements. In addition, azobenzene-based materials can then be suitable for integration into optical communication devices because of their reconfigurability, compactness, and infrastructure compatibility, which are the main future perspectives for achieving OAM-based technologies for the next generation, among other factors. In this paper, we see the possible use of azobenzene films in the generation and modification of OAM beams for optical communications through light-induced isomerization. In addition, the potential role of azobenzene films in the development of novel OAM-based devices that paves the way for the realization of high-capacity, OAM-enabled optical communication networks are discussed. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing and Measurement II)
Show Figures

Figure 1

13 pages, 42827 KB  
Article
Second-Harmonic Generation of the Vortex Beams with Integer and Fractional Topological Charges
by Shirui Zhang, Weizhou Hou, Xin Tao, Minghao Guo, Yueqing Li and Peng Li
Photonics 2023, 10(8), 867; https://doi.org/10.3390/photonics10080867 - 26 Jul 2023
Cited by 4 | Viewed by 2681
Abstract
The single-pass second-harmonic generation (SHG) of a vortex beam under low fundamental wave depletion is systematically studied. Vortex modes at 1064 nm with integer topological charges from ±1 to ±9 and fractional ones at ±0.75 are generated by modulating the fundamental Gaussian beam [...] Read more.
The single-pass second-harmonic generation (SHG) of a vortex beam under low fundamental wave depletion is systematically studied. Vortex modes at 1064 nm with integer topological charges from ±1 to ±9 and fractional ones at ±0.75 are generated by modulating the fundamental Gaussian beam with different spiral phase plates. The frequency doubling of these fundamental vortex modes is realized via single-pass SHG through the KTP. A detailed theoretical model is set up in the single-pass SHG of the vortex beams. Theoretical analysis indicates that the higher the order of the vortex beams, the lower the SHG efficiency, when the beam waists and fundamental power are given. The experimentally measured SHG output characteristics verify those obtained via theoretical analysis. Conservation of the orbital angular momentum during the SHG process is also verified, regardless of the fractional or integer vortex beams. SH LG0,2l vortex beams with high mode purity are obtained. The beam waists of fundamental/SH in KTP measured using a 4f system demonstrate that the Rayleigh ranges of the fundamental wave and SH wave are the same. The paper comprehensively presents some basic laws in the single-pass SHG of a vortex beam. In addition, it also indicates that SHG is an effective method to improve the mode purity of vortex beam. Full article
Show Figures

Figure 1

9 pages, 2983 KB  
Communication
Generation of Vector Vortex Beams Based on the Optical Integration of Dynamic Phase and Geometric Phase
by Kuiming Zeng, Shanshan He, Xianping Wang and Hailu Luo
Photonics 2023, 10(2), 214; https://doi.org/10.3390/photonics10020214 - 15 Feb 2023
Cited by 6 | Viewed by 3978
Abstract
The phase and polarization of electromagnetic waves can be conveniently manipulated by the dynamic phase and geometric phase elements. Here, we propose a compact optical integration of dynamic phase and geometric phase to generate arbitrary vector vortex beams on a hybrid-order Poincaré sphere. [...] Read more.
The phase and polarization of electromagnetic waves can be conveniently manipulated by the dynamic phase and geometric phase elements. Here, we propose a compact optical integration of dynamic phase and geometric phase to generate arbitrary vector vortex beams on a hybrid-order Poincaré sphere. Two different technologies have been applied to integrate dynamic and geometric phase elements into a single glass plate to modulate the phase and polarization of light simultaneously. A spiral phase structure is made on one side of a glass substrate with optical lithography and a geometric phase metasurface structure is designed on the other side by femtosecond laser writing. The vector polarization is realized by the metasurface structure, while the vortex phase is generated by the spiral phase plate. Therefore, any desirable vector vortex beams on the hybrid-order Poincaré sphere can be generated. We believe that our scheme may have potential applications in future integrated optical devices for the generation of vector vortex beams due to its the high transmission efficiency and conversion efficiency. Full article
(This article belongs to the Special Issue Vortex Beams: Fundamentals and Applications)
Show Figures

Figure 1

16 pages, 10783 KB  
Article
Multilevel Spiral Axicon for High-Order Bessel–Gauss Beams Generation
by Rebeca Tudor, George Andrei Bulzan, Mihai Kusko, Cristian Kusko, Viorel Avramescu, Dan Vasilache and Raluca Gavrila
Nanomaterials 2023, 13(3), 579; https://doi.org/10.3390/nano13030579 - 31 Jan 2023
Cited by 19 | Viewed by 3950
Abstract
This paper presents an efficient method to generate high-order Bessel–Gauss beams carrying orbital angular momentum (OAM) by using a thin and compact optical element such as a multilevel spiral axicon. This approach represents an excellent alternative for diffraction-free OAM beam generation instead of [...] Read more.
This paper presents an efficient method to generate high-order Bessel–Gauss beams carrying orbital angular momentum (OAM) by using a thin and compact optical element such as a multilevel spiral axicon. This approach represents an excellent alternative for diffraction-free OAM beam generation instead of complex methods based on a doublet formed by a physical spiral phase plate and zero-order axicon, phase holograms loaded on spatial light modulators (SLMs), or the interferometric method. Here, we present the fabrication process for axicons with 16 and 32 levels, characterized by high mode conversion efficiency and good transmission for visible light (λ = 633 nm wavelength). The Bessel vortex states generated with the proposed diffractive optical elements (DOEs) can be exploited as a very useful resource for optical and quantum communication in free-space channels or in optical fibers. Full article
(This article belongs to the Special Issue Nanomaterials for Photonics: Advances and Applications)
Show Figures

Figure 1

16 pages, 4577 KB  
Article
Experimental Study on Active Thermal Protection for Electronic Devices Used in Deep−Downhole−Environment Exploration
by Shihong Ma, Shuo Zhang, Jian Wu, Yongmin Zhang, Wenxiao Chu and Qiuwang Wang
Energies 2023, 16(3), 1231; https://doi.org/10.3390/en16031231 - 23 Jan 2023
Cited by 12 | Viewed by 2731
Abstract
Electronic devices are commonly used for exploiting and extracting shale oil in deep downhole environments. However, high−temperature−and−pressure downhole environments jeopardize the safe operation of electronic components due to their severe thermal conditions. In the present study, an active thermal−insulation system is proposed, which [...] Read more.
Electronic devices are commonly used for exploiting and extracting shale oil in deep downhole environments. However, high−temperature−and−pressure downhole environments jeopardize the safe operation of electronic components due to their severe thermal conditions. In the present study, an active thermal−insulation system is proposed, which consists of a spiral annular cooling plate (ACP), a thermal storage container with phase−change material (PCM) and an aerogel mat (AM). The effect of the ACP’s structure, layout and working−medium flowrate on the heat−protection performance were experimentally measured; temperature−control capability and system−operating time were used as the criteria. The results show that the AM layer is necessary and that the inner−ACP case displays better thermal−protection performance. Next, a dimensionless temperature−control factor (TCF) was proposed to evaluate the trade−off between temperature control and the system’s operating time. Note that the TCF of the spiral ACP can be improved by 1.62 times compared to the spiral−ACP case. Since the lower flowrate allows better TCF and longer operating times, intermittent control of the flowrate with a 1−minute startup and 2−minute stopping time at 200 mL/min can further extend the system’s operating time to 5 h, and the TCF is 3.3 times higher than with a constant flowrate of vm = 200 mL/min. Full article
Show Figures

Figure 1

13 pages, 4932 KB  
Article
Preparation and Thermal Model of Tetradecane/Expanded Graphite and A Spiral Wavy Plate Cold Storage Tank
by Hongguang Zhang, Tanghan Wu, Lei Tang, Ziye Ling, Zhengguo Zhang and Xiaoming Fang
Energies 2022, 15(24), 9435; https://doi.org/10.3390/en15249435 - 13 Dec 2022
Cited by 4 | Viewed by 2497
Abstract
A cold storage unit can store the cold energy off-peak and release it for building cooling on-peak, which can reduce the electricity load of air conditioning systems. n-tetradecane is a suitable cold storage material for air conditioning, with a phase change temperature of [...] Read more.
A cold storage unit can store the cold energy off-peak and release it for building cooling on-peak, which can reduce the electricity load of air conditioning systems. n-tetradecane is a suitable cold storage material for air conditioning, with a phase change temperature of is 4–8 °C and a phase change enthalpy of 200 kJ/kg. However, its low thermal conductivity limits the application of n-tetradecane for high-power cold storage/release. This paper prepares a tetradecane/expanded graphite (EG) composite phase change material (CPCM), whose thermal conductivity can be increased up to 21.0 W/m·K, nearly 100 times over the raw n-tetradecane. A novel model to predict the maximum loading fraction of paraffin in the EG matrix is presented, with an error within 1.7%. We also develop a thermal conductivity model to predict the thermal conductivity of the CPCM precisely, with an error of less than 10%. In addition, an innovative spiral wave plate cold storage tank has been designed for the tetradecane/EG composite. The power and energy density of the cold storage tank are significantly improved compared to that of raw tetradecane. The energy density reaches 40 kWh/m3, which is high among the organic PCM thermal storage tank. This paper shows the significance of thermal conductivity enhancement in designing a cold storage tank. Full article
(This article belongs to the Special Issue Heat and Cold Storage for a Net-Zero Future)
Show Figures

Figure 1

16 pages, 4050 KB  
Article
Numerical Simulation and Experimental Study of a Multistage Multiphase Separation System
by Xuezhong Chen, Jian Zheng, Jiayu Jiang, Hao Peng, Yanli Luo and Liming Zhang
Separations 2022, 9(12), 405; https://doi.org/10.3390/separations9120405 - 1 Dec 2022
Cited by 11 | Viewed by 3439
Abstract
Nowadays, most oilfields have entered the high water cut stage of waterflood development. The importance of oil–water separation technology becomes more obvious. Gravity separation is one of the most commonly used treatment techniques for produced fluid. The gravitational separator has a large processing [...] Read more.
Nowadays, most oilfields have entered the high water cut stage of waterflood development. The importance of oil–water separation technology becomes more obvious. Gravity separation is one of the most commonly used treatment techniques for produced fluid. The gravitational separator has a large processing capacity and a wide application range, but its structure is relatively simple and the separation efficiency gradually falls behind to meet current production needs. The key difficulties to improve the separation efficiency are to analyze the flow field and coalescing components inside the separator. Aiming at these difficulties, this paper reports an innovatively designed series-parallel multistage multiphase separation system (MMSS). A horizontal separator is connected in series with a vertical separator, and the vertical separator consists of five discrete pipes connected in parallel. Different coalescing components are then set inside the vertical separator. The separation effect of the MMSS is studied by numerical simulation and laboratory experiments. The oil phase volume distribution cloud diagrams of coalescing components are analyzed by numerical simulation, including semicircle baffle, spiral track plate, four-hole plate and seven-hole plate. Laboratory experiments show that MMSS has a high separation efficiency, and the water content at the oil outlet is 3.0% less than that of the horizontal separator. By observing the shape of oil droplets at the outlet and measuring the oil cut and water cut at the sampling outlet, the separation effect of four coalescent plates is obtained. According to the statistics, when the volumetric flow at the inlet of the separator is 1.5 m3/h, the average particle size of oil drops in the blank pipe, semicircular baffle, four-hole plate, spiral track and seven-hole plate increases in turn. A continuous oil layer appears at the outlet of the vertical separator in the fully open state. The water content at the oil outlet of the semicircular baffle coalescing component is always at a high level under different flow rates. When the inlet volumetric flow rate is less than 1.6 m3/h, the performance of the spiral track coalescing component is better. With the increase of the inlet volumetric flow rate, the separation efficiency of the spiral track is lower than that of the orifice. The results show that the semicircular coalescing component has the worst performance, the spiral track coalescing component is superior at small volumetric flow rates, and the orifice coalescing component is superior at large volumetric flow rates. Full article
(This article belongs to the Topic Oil, Gas and Water Separation Research)
Show Figures

Graphical abstract

10 pages, 5285 KB  
Communication
Generation, Transmission, and Amplification of OAM Modes in the PbSe-Doped Ring-Core Fiber Carrying 3D Printed Spiral Phase Plate
by Yana Shang, Huimei Wei, Hengfei Guo, Na Chen, Zhenyi Chen, Heming Wei, Kemin Wang, Yanhua Dong, Fufei Pang and Tingyun Wang
Photonics 2022, 9(11), 823; https://doi.org/10.3390/photonics9110823 - 2 Nov 2022
Cited by 2 | Viewed by 3019
Abstract
Vortex beams carrying orbital angular momentum (OAM) have increasingly attracted attention in the field of optical communication. However, transmission is still an issue due to transmission loss, especially in optical fibers. In this work, we proposed, designed, and fabricated micro spiral phase plates [...] Read more.
Vortex beams carrying orbital angular momentum (OAM) have increasingly attracted attention in the field of optical communication. However, transmission is still an issue due to transmission loss, especially in optical fibers. In this work, we proposed, designed, and fabricated micro spiral phase plates (SPPs) directly on an end facet of a piece of PbSe-doped ring-core fiber (RCF) through two-photon polymerization, realizing the integration of OAM beam generation, transmission, and amplification. The prepared RCF comprises a double-clad structure with a core-clad refractive index difference of 2.2% and the fluorescence range is 1150 nm–1700 nm. The intensity distribution of the OAM beam and the spiral interference fringes were obtained, which indicated that the OAM mode (|l|=1, 2, 3, 4) was generated and transmitted directly within the fiber. The small-signal amplification of four OAM modes was accomplished at 1550 nm under a pump power of 634 mW. The on–off gain is >13.2 dB for all modes and the differential mode gain (DMG) is <1.7 dB. The SPP-carrying RCF structure demonstrates the integration of generation, transmission, and amplification of higher-order OAM modes in all-fiber systems. Full article
(This article belongs to the Special Issue Direct Laser Writing for Photonic Applications)
Show Figures

Figure 1

13 pages, 2401 KB  
Article
Highly Efficient Perfect Vortex Beams Generation Based on All-Dielectric Metasurface for Ultraviolet Light
by Muhammad Danial Shafqat, Nasir Mahmood, Muhammad Zubair, Muhammad Qasim Mehmood and Yehia Massoud
Nanomaterials 2022, 12(19), 3285; https://doi.org/10.3390/nano12193285 - 21 Sep 2022
Cited by 36 | Viewed by 4343
Abstract
Featuring shorter wavelengths and high photon energy, ultraviolet (UV) light enables many exciting applications including photolithography, sensing, high-resolution imaging, and optical communication. The conventional methods of UV light manipulation through bulky optical components limit their integration in fast-growing on-chip systems. The advent of [...] Read more.
Featuring shorter wavelengths and high photon energy, ultraviolet (UV) light enables many exciting applications including photolithography, sensing, high-resolution imaging, and optical communication. The conventional methods of UV light manipulation through bulky optical components limit their integration in fast-growing on-chip systems. The advent of metasurfaces promised unprecedented control of electromagnetic waves from microwaves to visible spectrums. However, the availability of suitable and lossless dielectric material for the UV domain hindered the realization of highly efficient UV metasurfaces. Here, a bandgap-engineered silicon nitride (Si3N4) material is used as a best-suited candidate for all-dielectric highly efficient UV metasurfaces. To demonstrate the wavefront manipulation capability of the Si3N4 for the UV spectrum, we design and numerically simulate multiple all-dielectric metasurfaces for the perfect vortex beam generation by combing multiple phase profiles into a single device. For different numerical apertures (NA =0.3 and 0.7), it is concluded that the diffracted light from the metasurfaces with different topological charges results in an annular intensity profile with the same ring radius. It is believed that the presented Si3N4 materials and proposed design methodology for PV beam-generating metasurfaces will be applicable in various integrated optical and nanophotonic applications such as information processing, high-resolution spectroscopy, and on-chip optical communication. Full article
Show Figures

Figure 1

11 pages, 1969 KB  
Article
Calibration of the Soleil–Babinet Compensator Based on the Vectorial Optical Field
by Yayun Ma, Fen Yang and Dong’e Zhao
Photonics 2022, 9(6), 416; https://doi.org/10.3390/photonics9060416 - 15 Jun 2022
Cited by 10 | Viewed by 4121
Abstract
The Soleil–Babinet compensator (SBC) is a variable retarder and has been used in a variety of application fields. A scheme based on the vectorial optical field is proposed to calibrate the SBC by transforming the change of the phase retardation into the visible [...] Read more.
The Soleil–Babinet compensator (SBC) is a variable retarder and has been used in a variety of application fields. A scheme based on the vectorial optical field is proposed to calibrate the SBC by transforming the change of the phase retardation into the visible rotation of the petal-like pattern. The relationship between the rotation angle of the petal-like pattern and the phase retardation of the SBC is established theoretically. In the experiment, the vector beam is generated by using the spiral phase plate (SPP) and the modified Mach–Zehnder interferometer based on the superposition principle of two orthogonal circularly polarized vortex beams with opposite topological charges. Taking advantage of the image processing method, the rotation angles of the acquired petal patterns are calculated, and the relationship between the phase retardation of the SBC and the displacements of its micrometer screw is determined. The measured phase retardation of the SBC ranges from −277.00° to 516.57°. By linearly fitting the experimental data, the phase sensitivity is 33.076 ± 0.147 °/mm, and the coefficient of determination value that shows the linearity of the experimental data is 0.9995. The experimental results agree well with the theoretical data. Full article
(This article belongs to the Special Issue Vortex Beams: Fundamentals and Applications)
Show Figures

Figure 1

13 pages, 14296 KB  
Article
Generation and Detection of Optical Vortices with Multiple Cascaded Spiral Phase Plates
by Ziheng Zhou, Peng Li, Jingbo Ma, Shirui Zhang and Yuzong Gu
Photonics 2022, 9(5), 354; https://doi.org/10.3390/photonics9050354 - 18 May 2022
Cited by 11 | Viewed by 3998
Abstract
Spiral phase plate (SPP) is the widely used method in the generation of vortex beam (VB) with fixed topological charges (TCs) for specific wavelength. Although VB with large TCs can be directly generated by using the SPP with high vortex order. The fabrication [...] Read more.
Spiral phase plate (SPP) is the widely used method in the generation of vortex beam (VB) with fixed topological charges (TCs) for specific wavelength. Although VB with large TCs can be directly generated by using the SPP with high vortex order. The fabrication of high-quality SPPs with high vortex orders usually requires complex manufacturing process and high machining accuracy. An alternative method to generate VBs with large TCs is cascaded multiple SPPs with low order. In this study, we numerically calculate the transmitted light field of cascaded multiple SPPs according to the Huygens–Fresnel diffraction integral, and perform the experimental verifications. Based on cascading 6 SPPs (3 SPPs with TCs of 2, and 3 SPPs with TCs 4, respectively), an VB with TCs as high as 18 is generated. Furthermore, The TCs of the generated VB are detected by coaxial and off-axis interfering with fundamental Gaussian beam or its conjugate beam, respectively. The generated fork and spiral patterns allow us to distinguish the value and sign of TCs carried by the VB. The experimental results coincide well with the theoretical simulations. The fork pattern shows better resolution than the spiral one, and the petal pattern with small spiral allows us to distinguish large TCs with a higher resolution. Full article
(This article belongs to the Special Issue Singular Optics)
Show Figures

Figure 1

Back to TopTop