Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = sperm repository

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1627 KiB  
Communication
Untargeted Metabolomic Profiling of Extracellular Vesicles Isolated from Human Seminal Plasma
by Manesh Kumar Panner Selvam, Partha K. Chandra, Zahra Bakhtiary, David W. Busija and Suresh C. Sikka
Biomolecules 2024, 14(10), 1211; https://doi.org/10.3390/biom14101211 - 26 Sep 2024
Cited by 2 | Viewed by 1484
Abstract
Seminal extracellular vesicles (SemEVs) are repositories of biomolecules, including metabolites involved in the regulation of sperm function. The correlation between the metabolite profile of SemEVs and semen parameters, along with their role in regulating sperm function, is an unexplored area. This preliminary study [...] Read more.
Seminal extracellular vesicles (SemEVs) are repositories of biomolecules, including metabolites involved in the regulation of sperm function. The correlation between the metabolite profile of SemEVs and semen parameters, along with their role in regulating sperm function, is an unexplored area. This preliminary study evaluated the metabolomic content of SemEVs. Semen samples were obtained from 18 healthy men, and SemEVs were extracted from seminal plasma using the size exclusion chromatography qEV Gen 2–35 nm column coupled with an automatic fraction collector. The physical characterization of SemEVs was carried out with the ZetaView PMX-430-Z QUATT laser system. EV protein markers were detected using Western blot. In addition, these SemEVs were used for metabolomic profiling and functional bioinformatic analysis. The mean concentration of isolated SemEVs was 1.7 ± 1.1 × 1011/mL of seminal plasma, whereas SemEVs size and zeta potential were 129.5 ± 5.5 nm and −40.03 ± 3.99 mV, respectively. Western blot analysis confirmed the presence of EV specific markers such as CD81, ALIX, and TSG101. A total of 107 metabolites were identified using this untargeted metabolomic approach in SemEVs. Bioinformatics analysis further revealed that metabolites associated with tyrosine metabolism were highly enriched in these SemEVs. Ingenuity Pathway Analysis (IPA) also indicated that these metabolites present in SemEVs were involved in the regulation of the free radical scavenging pathway. Furthermore, our metabolomic results suggest that these SemEV-associated metabolites may play a pivotal role in the maintenance of seminal plasma redox homeostasis. Full article
(This article belongs to the Special Issue Extracellular Vesicles as Biomarkers of Diseases)
Show Figures

Figure 1

18 pages, 4642 KiB  
Article
Establishment of a Practical Sperm Cryopreservation Pathway for the Axolotl (Ambystoma mexicanum): A Community-Level Approach to Germplasm Repository Development
by Nicholas Coxe, Yue Liu, Lucía Arregui, Rose Upton, Sarah Bodenstein, Steven Randal Voss, Maria T. Gutierrez-Wing and Terrence R. Tiersch
Animals 2024, 14(2), 206; https://doi.org/10.3390/ani14020206 - 8 Jan 2024
Cited by 5 | Viewed by 2851
Abstract
The axolotl (Ambystoma mexicanum) draws great attention around the world for its importance as a biomedical research model, but housing and maintaining live animals is increasingly expensive and risky as new transgenic lines are developed. The goal of this work was [...] Read more.
The axolotl (Ambystoma mexicanum) draws great attention around the world for its importance as a biomedical research model, but housing and maintaining live animals is increasingly expensive and risky as new transgenic lines are developed. The goal of this work was to develop an initial practical pathway for sperm cryopreservation to support germplasm repository development. The present study assembled a pathway through the investigation of axolotl sperm collection by stripping, refrigerated storage in various osmotic pressures, cryopreservation in various cryoprotectants, and in vitro fertilization using thawed sperm. By the stripping of males, 25–800 µL of sperm fluid was collected at concentrations of 1.6 × 106 to 8.9 × 107 sperm/mL. Sperm remained motile for 5 d in Hanks’ Balanced Salt Solution (HBSS) at osmolalities of 100–600 mOsm/kg. Sperm cryopreserved in 0.25 mL French straws at 20 °C/min in a final concentration of 5% DMFA plus 200 mM trehalose and thawed at 25 °C for 15 s resulted in 52 ± 12% total post-thaw motility. In six in vitro fertilization trials, 20% of eggs tested with thawed sperm continued to develop to stage 7–8 after 24 h, and a third of those embryos (58) hatched. This work is the first report of successful production of axolotl offspring with cryopreserved sperm, providing a general framework for pathway development to establish Ambystoma germplasm repositories for future research and applications. Full article
Show Figures

Figure 1

19 pages, 6835 KiB  
Article
A Modified-Herringbone Micromixer for Assessing Zebrafish Sperm (MAGS)
by Jorge A. Belgodere, Mustafa Alam, Valentino E. Browning, Jason Eades, Jack North, Julie A. Armand, Yue Liu, Terrence R. Tiersch and W. Todd Monroe
Micromachines 2023, 14(7), 1310; https://doi.org/10.3390/mi14071310 - 26 Jun 2023
Cited by 1 | Viewed by 2538
Abstract
Sperm motility analysis of aquatic model species is important yet challenging due to the small sample volume, the necessity to activate with water, and the short duration of motility. To achieve standardization of sperm activation, microfluidic mixers have shown improved reproducibility over activation [...] Read more.
Sperm motility analysis of aquatic model species is important yet challenging due to the small sample volume, the necessity to activate with water, and the short duration of motility. To achieve standardization of sperm activation, microfluidic mixers have shown improved reproducibility over activation by hand, but challenges remain in optimizing and simplifying the use of these microdevices for greater adoption. The device described herein incorporates a novel micromixer geometry that aligns two sperm inlet streams with modified herringbone structures that split and recombine the sample at a 1:6 dilution with water to achieve rapid and consistent initiation of motility. The polydimethylsiloxane (PDMS) chip can be operated in a positive or negative pressure configuration, allowing a simple micropipettor to draw samples into the chip and rapidly stop the flow. The device was optimized to not only activate zebrafish sperm but also enables practical use with standard computer-assisted sperm analysis (CASA) systems. The micromixer geometry could be modified for other aquatic species with differing cell sizes and adopted for an open hardware approach using 3D resin printing where users could revise, fabricate, and share designs to improve standardization and reproducibility across laboratories and repositories. Full article
(This article belongs to the Collection Micromixers: Analysis, Design and Fabrication)
Show Figures

Figure 1

16 pages, 3958 KiB  
Article
Cryopreservation of Hydractinia symbiolongicarpus Sperm to Support Community-Based Repository Development for Preservation of Genetic Resources
by Aidan L. Huene, Jack C. Koch, Lucía Arregui, Yue Liu, Matthew L. Nicotra, Virginia M. Weis and Terrence R. Tiersch
Animals 2022, 12(19), 2537; https://doi.org/10.3390/ani12192537 - 22 Sep 2022
Cited by 3 | Viewed by 2462
Abstract
Hydractinia symbiolongicarpus is an emerging model organism in which cutting-edge genomic tools and resources are being developed for use in a growing number of research fields. One limitation of this model system is the lack of long-term storage for genetic resources. The goal [...] Read more.
Hydractinia symbiolongicarpus is an emerging model organism in which cutting-edge genomic tools and resources are being developed for use in a growing number of research fields. One limitation of this model system is the lack of long-term storage for genetic resources. The goal of this study was to establish a generalizable cryopreservation approach for Hydractinia that would support future repository development for other cnidarian species. Specific objectives were to: (1) characterize basic parameters related to sperm quality; (2) develop a generalizable approach for sperm collection; (3) assess the feasibility of in vitro fertilization (IVF) with sperm after refrigerated storage; (4) assess the feasibility of IVF with sperm cryopreserved with various sperm concentrations; (5) evaluate feasibility of cryopreservation with various freezing conditions, and (6) explore the feasibility of cryopreservation by use of a 3-D printed open-hardware (CryoKit) device. Animal husbandry and sperm collection were facilitated by use of 3-D printed open hardware. Hydractinia sperm at a concentration of 2 × 107 cells/mL stored at 4 °C for 6 d were able to achieve 50% fertilization rate. It appeared that relatively higher sperm concentration (>5 × 107 cells/mL) for cryopreservation could promote fertilization. A fertilization rate of 41–69% was observed using sperm equilibrated with 5, 10, or 15% (v/v) cryoprotectant (dimethyl sulfoxide or methanol) for 20 min, cooled at a rate of 5, 10, or 20 °C/min from 4 °C to −80 °C, at a cell concentration of 108/mL, in 0.25 mL French straws. Samples cryopreserved with the CryoKit produced a fertilization rate of 72–82%. Establishing repository capabilities for the Hydractinia research community will be essential for future development, maintenance, protection, and distribution of genetic resources. More broadly, these generalizable approaches can be used as a model to develop germplasm repositories for other cnidarian species. Full article
(This article belongs to the Special Issue Reproduction in Aquatic Animals)
Show Figures

Figure 1

15 pages, 1960 KiB  
Article
An Open-Hardware Insemination Device for Small-Bodied Live-Bearing Fishes to Support Development and Use of Germplasm Repositories
by Elise R. Harmon, Yue Liu, Hamed Shamkhalichenar, Valentino Browning, Markita Savage, Terrence R. Tiersch and William Todd Monroe
Animals 2022, 12(8), 961; https://doi.org/10.3390/ani12080961 - 8 Apr 2022
Cited by 5 | Viewed by 2840
Abstract
Small-bodied live-bearing fishes attract broad attention because of their importance in biomedical research and critical conservation status in natural habitats. Artificial insemination is an essential process to establish hybrid lines and for the operation of sperm repositories. The existing mouth-pipetting technique for artificial [...] Read more.
Small-bodied live-bearing fishes attract broad attention because of their importance in biomedical research and critical conservation status in natural habitats. Artificial insemination is an essential process to establish hybrid lines and for the operation of sperm repositories. The existing mouth-pipetting technique for artificial insemination of live-bearing fishes has not been substantially upgraded since the first implementation in the 1950s. The goal of this work was to develop a standardized artificial inseminator device (SAID) to address issues routinely encountered in insemination by mouth-pipetting, including lack of reproducibility among different users, difficulty in training, and large unreportable variation in sample volume and pressure during insemination. Prototypes of the SAID were designed as relatively inexpensive (<USD 80) open hardware based on commercially available and 3-D printed components to enable broad community access. A linear actuator was used to accurately control the position of a piston for fluid transfer with a standard deviation of <0.1 mm over a 4 mm range of travel. The volume of sample transfer was precisely controlled with a linear relationship (r2 > 0.99) between the piston position and volume. Pressure generation from eight mouth-pipetting operators and SAID prototypes were assessed by pressure sensors. The pressure control by SAID was superior to that produced by mouth-pipetting, yielding lower pressures (31–483 Pa) and smaller variations (standard deviation <11 Pa). These pressures were sufficient to deliver 1–5 μL of fluid into female reproductive tracts yet low enough to avoid physical injury to fish. Community-level enhancements of the SAID prototype could enable standardized insemination with minimal training and facilitate the participation of research communities in the use of cryopreserved genetic resources. Full article
Show Figures

Figure 1

19 pages, 47727 KiB  
Article
Sperm Repository for a Breeding Program of the Eastern Oyster Crassostrea virginica: Sample Collection, Processing, Cryopreservation, and Data Management Plan
by Huiping Yang, Yuanzi Huo, Jayme C. Yee, Scott Rikard, William C. Walton and Eric Saillant
Animals 2021, 11(10), 2836; https://doi.org/10.3390/ani11102836 - 28 Sep 2021
Cited by 7 | Viewed by 3276
Abstract
The Eastern oyster Crassostrea virginica (Family Ostreidae) is one of the most important fishery and aquaculture species in the U.S. and is a keystone species for coastal reefs. A breeding program was initiated in 2019 to support the fast-growing aquaculture industry culturing this [...] Read more.
The Eastern oyster Crassostrea virginica (Family Ostreidae) is one of the most important fishery and aquaculture species in the U.S. and is a keystone species for coastal reefs. A breeding program was initiated in 2019 to support the fast-growing aquaculture industry culturing this species in the Gulf of Mexico. Oysters from 17 wild populations in embayment along the U.S. Gulf of Mexico coast from southwest Florida to the Matagorda Bay, Texas were used as broodstock for the program to maximize genetic diversity in the base population. A sperm repository of the broodstock was established to support the breeding project. The goal of this study was to demonstrate the sperm sample collection, processing, cryopreservation, and the data management plan involved in the establishment of a sperm germplasm repository of base populations. The supporting objectives were to: (1) develop a data management plan for the sperm repository; (2) streamline the procedure for sample collection, processing, and cryopreservation; (3) incorporate sperm quality analysis into the procedure, and (4) archive the cryopreserved samples as a repository for future use in the breeding program. This sperm repository included a total of 102 male oysters from the 17 collection sites (six oysters per site). A data management plan was developed with six categories, including sample collection, phenotype, fresh sperm, genotype, cryopreservation, and post-thaw sperm, as guide for data collection. Sperm collection was accomplished by strip spawn, and fresh sperm production, motility, and fertility were recorded for quality analysis. Cryopreserved sperm samples were sorted, labelled, archived, and stored in liquid nitrogen for future use. Post-thaw motility (1–30%) and plasm membrane integrity (15.34–70.36%) were recorded as post-thaw quality parameters. Overall, this study demonstrated a streamlined procedure of oyster sperm collection, processing, and cryopreservation for establishing a sperm repository that can serve as a template for construction of oyster germplasm repositories for breeding programs. Full article
(This article belongs to the Special Issue Gamete, Embryo and Larvae Handling in Aquatic Animals)
Show Figures

Figure 1

53 pages, 36439 KiB  
Review
A Review on Environmental Contaminants-Related Fertility Threat in Male Fishes: Effects and Possible Mechanisms of Action Learned from Wildlife and Laboratory Studies
by Sayyed Mohammad Hadi Alavi, Sepideh Barzegar-Fallah, Parastoo Rahdar, Mohammad Mahdi Ahmadi, Mina Yavari, Azadeh Hatef, Mahdi Golshan and Otomar Linhart
Animals 2021, 11(10), 2817; https://doi.org/10.3390/ani11102817 - 27 Sep 2021
Cited by 19 | Viewed by 7638
Abstract
Increasing global rates of diminished fertility in males has been suggested to be associated with exposure to environmental contaminants (ECs). The aquatic environments are the final repository of ECs. As the reproductive system is conserved in vertebrates, studies on the effects of ECs [...] Read more.
Increasing global rates of diminished fertility in males has been suggested to be associated with exposure to environmental contaminants (ECs). The aquatic environments are the final repository of ECs. As the reproductive system is conserved in vertebrates, studies on the effects of ECs on fertility endpoints in fishes provide us with valuable information to establish biomarkers in risk assessment of ECs, and to understand the ECs-related fertility threat. The aim of the present review was to evaluate associations between ECs and fertility determinants to better understand ECs-related male fertility threat in male fishes. Wildlife studies show that the reproductive system has been affected in fishes sampled from the polluted aquatic environment. The laboratory studies show the potency of ECs including natural and synthetic hormones, alkylphenols, bisphenols, plasticizers, pesticides, pharmaceutical, alkylating, and organotin agents to affect fertility determinants, resulting in diminished fertility at environmentally relevant concentrations. Both wildlife and laboratory studies reveal that ECs adverse effects on male fertility are associated with a decrease in sperm production, damage to sperm morphology, alternations in sperm genome, and decrease in sperm motility kinetics. The efficiency of ECs to affect sperm quality and male fertility highly depends on the concentration of the contaminants and the duration of exposure. Our review highlights that the number of contaminants examined over fertility tests are much lower than the number of contaminants detected in our environment. The ECs effects on fertility are largely unknown when fishes are exposed to the contaminants at early developmental stages. The review suggests the urgent need to examine ECs effects on male fertility when a fish is exposed at different developmental stages in a single or combination protocol. The ECs effects on the sperm genome are largely unknown to understand ECs-related inheritance of reproductive disorders transmitted to the progeny. To elucidate modes of action of ECs on sperm motility, it is needed to study functional morphology of the motility apparatus and to investigate ECs-disrupted motility signaling. Full article
Show Figures

Figure 1

Back to TopTop