Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = sperm hydroxymethylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3596 KB  
Article
Exploring the Epigenetic Landscape of Spermatozoa: Impact of Oxidative Stress and Antioxidant Supplementation on DNA Methylation and Hydroxymethylation
by Elisa Hug, Yoan Renaud, Rachel Guiton, Mehdi Ben Sassi, Charles Marcaillou, Aron Moazamian, Parviz Gharagozloo, Joël R. Drevet and Fabrice Saez
Antioxidants 2024, 13(12), 1520; https://doi.org/10.3390/antiox13121520 (registering DOI) - 12 Dec 2024
Cited by 4 | Viewed by 2199
Abstract
Reproductive success is dependent on gamete integrity, and oxidative stress alters male nuclei, meaning that no DNA repair is possible due to chromatin compaction. The composition of sperm makes it highly sensitive to reactive oxygen species (ROS) but, at the same time, ROS [...] Read more.
Reproductive success is dependent on gamete integrity, and oxidative stress alters male nuclei, meaning that no DNA repair is possible due to chromatin compaction. The composition of sperm makes it highly sensitive to reactive oxygen species (ROS) but, at the same time, ROS are needed for sperm physiology. Over the past 30 years, much attention has been paid to the consequences of oxidative stress on sperm properties and the protective effects of antioxidant formulations to help fertility. Spermatozoa also carry epigenetic marks, critical for embryo development and the health of offspring. As DNA oxidative damage may disturb the sperm epigenome, we used an established mouse model of post-testicular sperm DNA oxidation to investigate sperm DNA methylation and hydroxymethylation. We also analyzed the potential corrective effect of oral antioxidant supplementation, proven to reduce sperm DNA oxidative damage, on sperm DNA methyl/hydroxymethyl marks. We show that sperm DNA oxidation is associated with a significant increase in overall hydroxymethylation. Oral antioxidant supplementation led to unexpected mild epigenetic changes. Antioxidant supplementation should not be proposed without proper clinical evaluation as it may alter sperm epigenetic marks, leading to a risk of paternally inherited epigenetic alterations. Full article
(This article belongs to the Special Issue Oxidative Stress and Male Reproductive Health)
Show Figures

Figure 1

22 pages, 3446 KB  
Article
Global 5mC and 5hmC DNA Levels in Human Sperm Subpopulations with Differentially Protaminated Chromatin in Normo- and Oligoasthenozoospermic Males
by Marta Olszewska, Oliwia Kordyl, Marzena Kamieniczna, Monika Fraczek, Piotr Jędrzejczak and Maciej Kurpisz
Int. J. Mol. Sci. 2022, 23(9), 4516; https://doi.org/10.3390/ijms23094516 - 19 Apr 2022
Cited by 8 | Viewed by 3856
Abstract
Epigenetic modifications play a special role in the male infertility aetiology. Published data indicate the link between sperm quality and sperm chromatin protamination. This study aimed to determine the relationship between methylation (5mC) and hydroxymethylation (5hmC) in sperm DNA, with respect to sperm [...] Read more.
Epigenetic modifications play a special role in the male infertility aetiology. Published data indicate the link between sperm quality and sperm chromatin protamination. This study aimed to determine the relationship between methylation (5mC) and hydroxymethylation (5hmC) in sperm DNA, with respect to sperm chromatin protamination in three subpopulations of fertile normozoospermic controls and infertile patients with oligo-/oligoasthenozoospermia. For the first time, a sequential staining protocol was applied, which allowed researchers to analyse 5mC/5hmC levels by immunofluorescence staining, with a previously determined chromatin protamination status (aniline blue staining), using the same spermatozoa. TUNEL assay determined the sperm DNA fragmentation level. The 5mC/5hmC levels were diversified with respect to chromatin protamination status in both studied groups of males, with the highest values observed in protaminated spermatozoa. The linkage between chromatin protamination and 5mC/5hmC levels in control males disappeared in patients with deteriorated semen parameters. A relationship between 5mC/5hmC and sperm motility/morphology was identified in the patient group. Measuring the 5mC/5hmC status of sperm DNA according to sperm chromatin integrity provides evidence of correct spermatogenesis, and its disruption may represent a prognostic marker for reproductive failure. Full article
(This article belongs to the Special Issue Molecular Biology of Human Fertility)
Show Figures

Figure 1

18 pages, 3169 KB  
Article
Telomere Length in Metaphase Chromosomes of Human Triploid Zygotes
by Anna A. Pendina, Mikhail I. Krapivin, Olga A. Efimova, Andrei V. Tikhonov, Irina D. Mekina, Evgeniia M. Komarova, Alla S. Koltsova, Alexander M. Gzgzyan, Igor Yu. Kogan, Olga G. Chiryaeva and Vladislav S. Baranov
Int. J. Mol. Sci. 2021, 22(11), 5579; https://doi.org/10.3390/ijms22115579 - 25 May 2021
Cited by 9 | Viewed by 3408
Abstract
The human lifespan is strongly influenced by telomere length (TL) which is defined in a zygote—when two highly specialised haploid cells form a new diploid organism. Although TL is a variable parameter, it fluctuates in a limited range. We aimed to establish the [...] Read more.
The human lifespan is strongly influenced by telomere length (TL) which is defined in a zygote—when two highly specialised haploid cells form a new diploid organism. Although TL is a variable parameter, it fluctuates in a limited range. We aimed to establish the determining factors of TL in chromosomes of maternal and paternal origin in human triploid zygotes. Using Q-FISH, we examined TL in the metaphase chromosomes of 28 human triploid zygotes obtained from 22 couples. The chromosomes’ parental origin was identified immunocytochemically through weak DNA methylation and strong hydroxymethylation in the sperm-derived (paternal) chromosomes versus strong DNA methylation and weak hydroxymethylation in the oocyte-derived (maternal) ones. In 24 zygotes, one maternal and two paternal chromosome sets were identified, while the four remaining zygotes contained one paternal and two maternal sets. For each zygote, we compared mean relative TLs between parental chromosomes, identifying a significant difference in favour of the paternal chromosomes, which attests to a certain “imprinting” of these regions. Mean relative TLs in paternal or maternal chromosomes did not correlate with the respective parent’s age. Similarly, no correlation was observed between the mean relative TL and sperm quality parameters: concentration, progressive motility and normal morphology. Based on the comparison of TLs in chromosomes inherited from a single individual’s gametes with those in chromosomes inherited from different individuals’ gametes, we compared intraindividual (intercellular) and interindividual variability, obtaining significance in favour of the latter and thus validating the role of heredity in determining TL in zygotes. A comparison of the interchromatid TL differences across the chromosomes from sets of different parental origin with those from PHA-stimulated lymphocytes showed an absence of a significant difference between the maternal and paternal sets but a significant excess over the lymphocytes. Therefore, interchromatid TL differences are more pronounced in zygotes than in lymphocytes. To summarise, TL in human zygotes is determined both by heredity and parental origin; the input of other factors is possible within the individual’s reaction norm. Full article
(This article belongs to the Special Issue Structural Variations of the Genome)
Show Figures

Figure 1

12 pages, 297 KB  
Article
Bisphenol A Exposure and Sperm ACHE Hydroxymethylation in Men
by Xiuxia Song, Maohua Miao, Xiaoyu Zhou, Dekun Li, Youping Tian, Hong Liang, Runsheng Li and Wei Yuan
Int. J. Environ. Res. Public Health 2019, 16(1), 152; https://doi.org/10.3390/ijerph16010152 - 8 Jan 2019
Cited by 26 | Viewed by 6170
Abstract
Exposure to bisphenol A (BPA) has been shown to impact human sperm quality. The epigenetic mechanisms underlying the effect remain unknown. The acetylcholinesterase (ACHE) gene is a sperm-expressed gene encoding the acetylcholine hydrolyzing enzyme acetylcholinesterase and participates in the apoptosis of cells, including [...] Read more.
Exposure to bisphenol A (BPA) has been shown to impact human sperm quality. The epigenetic mechanisms underlying the effect remain unknown. The acetylcholinesterase (ACHE) gene is a sperm-expressed gene encoding the acetylcholine hydrolyzing enzyme acetylcholinesterase and participates in the apoptosis of cells, including sperm. This study aimed to examine whether BPA exposure is associated with the hydroxymethylation level of the sperm ACHE gene. A total of 157 male factory workers were studied, among whom 74 had BPA exposure in the workplace (BPA exposure group) and 83 had no BPA exposure in the workplace (control group). Urine samples were collected for BPA measurement and semen samples were collected to assay for ACHE hydroxymethylation. Sperm ACHE hydroxymethylation level was higher in the BPA exposure group (p = 0.041) compared to the control group. When subjects were categorized according to tertiles of detected BPA level, higher ACHE hydroxymethylation levels were observed for the lowest, middle, and top tertiles compared to those with BPA below the limit of detection (LOD). In a linear regression analysis adjusted for confounders, a positive linear association between urine BPA concentration and 5-hydroxymethylcytosine (5hmC) rate of the sperm ACHE gene was observed, although the association did not reach statistical significance in all categories after being stratified by the BPA tertile. In conclusion, 5hmC of the sperm ACHE gene was positively associated with BPA exposure, which may provide supportive evidence for BPA’s effects on male fertility or other health endpoints. Full article
(This article belongs to the Special Issue Endocrine Disruptors Exposure on Human Health)
10 pages, 616 KB  
Article
Association of Bisphenol A Exposure with LINE-1 Hydroxymethylation in Human Semen
by Youping Tian, Xiaoyu Zhou, Maohua Miao, De-kun Li, Ziliang Wang, Runsheng Li, Hong Liang and Wei Yuan
Int. J. Environ. Res. Public Health 2018, 15(8), 1770; https://doi.org/10.3390/ijerph15081770 - 17 Aug 2018
Cited by 41 | Viewed by 4886
Abstract
Bisphenol A (BPA), an exogenous endocrine-disrupting chemical, has been shown to alter DNA methylation. However, little information is available about the effect of BPA exposure on DNA hydroxymethylation in humans. The objective of the present study was to examine whether BPA exposure was [...] Read more.
Bisphenol A (BPA), an exogenous endocrine-disrupting chemical, has been shown to alter DNA methylation. However, little information is available about the effect of BPA exposure on DNA hydroxymethylation in humans. The objective of the present study was to examine whether BPA exposure was associated with DNA hydroxymethylation in human semen samples. We measured urine BPA levels and LINE-1 hydroxymethylation in 158 male factory workers selected from an occupational cohort study conducted in China between 2004 and 2008. Among them, there were 72 male workers with occupational BPA exposure (BPA-exposed group) and 86 male workers without occupational BPA exposure (unexposed group). Multivariate linear regression models were used to examine the association of exposure to BPA with LINE-1 hydroxymethylation. LINE-1 was more highly hydroxymethylated in the BPA-exposed group than in the unexposed group (median 12.97% vs. 9.68%, respectively; p < 0.05), after adjusting for the potential confounders. The medians of 5-hydroxymethylcytosine (5hmC) generally increased with increasing urine BPA levels: 8.79%, 12.16%, 11.53%, and 13.45%, for undetected BPA and corresponding tertiles for the detected BPA, respectively. After analysis using data at individual level, our findings indicated that BPA exposure was associated with alterations of sperm LINE-1 hydroxymethylation, which might have implications for understanding the mechanisms underlying BPA-induced adverse effects on male reproductive function. Full article
Show Figures

Figure 1

Back to TopTop