Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = spectroscopic amplitudes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5023 KiB  
Article
Lepidium virginicum Water-Soluble Chlorophyll-Binding Protein with Chlorophyll A as a Novel Contrast Agent for Photoacoustic Imaging
by Victor T. C. Tsang, Hannah H. Kim, Bingxin Huang, Simon C. K. Chan and Terence T. W. Wong
Sensors 2025, 25(11), 3492; https://doi.org/10.3390/s25113492 - 31 May 2025
Viewed by 488
Abstract
Photoacoustic (PA) imaging (PAI) holds great promise for non-invasive biomedical diagnostics. However, the efficacy of current contrast agents is often limited by photobleaching, toxicity, and complex synthesis processes. In this study, we introduce a novel, biocompatible PAI contrast agent: a recombinant water-soluble chlorophyll-binding [...] Read more.
Photoacoustic (PA) imaging (PAI) holds great promise for non-invasive biomedical diagnostics. However, the efficacy of current contrast agents is often limited by photobleaching, toxicity, and complex synthesis processes. In this study, we introduce a novel, biocompatible PAI contrast agent: a recombinant water-soluble chlorophyll-binding protein (WSCP) from Lepidium virginicum (LvP) reconstituted with chlorophyll a (LvP-chla). LvP-chla exhibits a strong and narrow absorption peak at 665 nm, with a molar extinction coefficient substantially higher than oxyhemoglobin and deoxyhemoglobin, enabling robust signal generation orthogonal to endogenous chromophores. Phantom studies confirmed a linear relationship between PA signal amplitude and LvP-chla concentration, demonstrating its stability and reliability. In vitro cytotoxicity testing using 4T1 cells showed high cell viability at 5 mg/mL, justifying its use for in vivo studies. In vivo experiments with a 4T1 tumor-bearing mouse model demonstrated successful tumor localization following intratumoral injection of LvP-chla, with clear visualization via spectroscopic differentiation from endogenous absorbers at 665 nm and 685 nm. Toxicity assessments, both in vitro and in vivo, revealed no adverse effects, and clearance studies confirmed minimal retention after 96 h. These findings show that LvP-chla is a promising contrast agent that enhances PAI capabilities through its straightforward synthesis, stability, and biocompatibility. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

22 pages, 3440 KiB  
Review
Coherent Vibrational Anti-Stokes Raman Spectroscopy Assisted by Pulse Shaping
by Kai Wang, James T. Florence, Xia Hua, Zehua Han, Yujie Shen, Jizhou Wang, Xi Wang and Alexei V. Sokolov
Molecules 2025, 30(10), 2243; https://doi.org/10.3390/molecules30102243 - 21 May 2025
Viewed by 1077
Abstract
Coherent anti-Stokes Raman scattering (CARS) is a powerful nonlinear spectroscopic technique widely used in biological imaging, chemical analysis, and combustion and flame diagnostics. The adoption of pulse shapers in CARS has emerged as a useful approach, offering precise control of optical waveforms. By [...] Read more.
Coherent anti-Stokes Raman scattering (CARS) is a powerful nonlinear spectroscopic technique widely used in biological imaging, chemical analysis, and combustion and flame diagnostics. The adoption of pulse shapers in CARS has emerged as a useful approach, offering precise control of optical waveforms. By tailoring the phase, amplitude, and polarization of laser pulses, the pulse shaping approach enables selective excitation, spectral resolution improvement, and non-resonant background suppression in CARS. This paper presents a comprehensive review of applying pulse shaping techniques in CARS spectroscopy for biophotonics. There are two different pulse shaping strategies: passive pulse shaping and active pulse shaping. Two passive pulse shaping techniques, hybrid CARS and spectral focusing CARS, are reviewed. Active pulse shaping using a programmable pulse shaper such as spatial light modulator (SLM) is discussed for CARS spectroscopy. Combining active pulse shaping and passive shaping, optimizing CARS with acousto-optic programmable dispersive filters (AOPDFs) is discussed and illustrated with experimental examples conducted in the authors’ laboratory. These results underscore pulse shapers in advancing CARS technology, enabling improved sensitivity, specificity, and broader applications across diverse scientific fields. Full article
Show Figures

Figure 1

9 pages, 1803 KiB  
Article
Inelastic Electron Tunneling Spectroscopy of Aryl Alkane Molecular Junction Devices with Graphene Electrodes
by Hyunwook Song
Crystals 2025, 15(5), 433; https://doi.org/10.3390/cryst15050433 - 1 May 2025
Cited by 1 | Viewed by 390
Abstract
We present a comprehensive vibrational spectroscopic analysis of vertical molecular junction devices constructed using single-layer graphene electrodes separated by an aryl alkane monolayer. In this work, inelastic electron tunneling spectroscopy (IETS) is employed to probe molecular vibrations within the junction, providing an in [...] Read more.
We present a comprehensive vibrational spectroscopic analysis of vertical molecular junction devices constructed using single-layer graphene electrodes separated by an aryl alkane monolayer. In this work, inelastic electron tunneling spectroscopy (IETS) is employed to probe molecular vibrations within the junction, providing an in situ fingerprint of the molecules. Graphene has emerged as a promising electrode material for molecular electronics due to its atomically thin, mechanically robust nature and ability to form stable contacts. However, prior to this study, the vibrational spectra of molecules in graphene-based molecular junctions had not been fully explored. Here, we demonstrate that vertically stacked graphene electrodes can be used to form stable and reproducible molecular junctions that yield well-resolved IETS signatures. The observed IETS spectra exhibit distinct peaks corresponding to the vibrational modes of the sandwiched aryl alkane molecules, and all major features are assigned through density functional theory calculations of molecular vibrational modes. Furthermore, by analyzing the broadening of IETS peaks with temperature and AC modulation amplitude, we extract intrinsic vibrational linewidths, confirming that the spectral features originate from the molecular junction itself rather than extrinsic noise or instrumental artifacts. These findings conclusively verify the presence of the molecular layer between graphene electrodes as the charge transport pathway and highlight the potential of graphene–molecule–graphene junctions for fundamental studies in molecular electronics. Full article
(This article belongs to the Special Issue Advances in Multifunctional Materials and Structures)
Show Figures

Figure 1

11 pages, 520 KiB  
Article
The Photometric Variability and Spectrum of the Hot Post-AGB Star IRAS 21546+4721
by Natalia Ikonnikova, Marina Burlak and Alexander Dodin
Galaxies 2025, 13(2), 31; https://doi.org/10.3390/galaxies13020031 - 31 Mar 2025
Cited by 1 | Viewed by 492
Abstract
We present the results of photometric and spectroscopic observations of a poorly studied B-type supergiant with infrared excess, the hot post-AGB star IRAS 21546+4721. Based on our photometric observations in the UBVRCIC bands, we detected rapid, night-to-night, [...] Read more.
We present the results of photometric and spectroscopic observations of a poorly studied B-type supergiant with infrared excess, the hot post-AGB star IRAS 21546+4721. Based on our photometric observations in the UBVRCIC bands, we detected rapid, night-to-night, non-periodic brightness variations in the star with peak-to-peak amplitudes up to 0.m3 in the V band, as well as color–color and color–brightness correlations. Based on its variability characteristics, IRAS 21546+4721 appears similar to other hot post-AGB stars. Possible causes of the photometric variability are discussed. Additionally, we acquired low-resolution spectra in a wavelength range from 3500 to 7500 Å. The spectrum contains absorption lines typical of an early B-type star, along with a set of emission lines of H I, He I, [O I], [O II], [N II], [S II], and C II originating from an ionized circumstellar envelope. An analysis of the emission spectrum allowed us to estimate the parameters of the gas envelope (Ne∼ 104 cm−3, Te∼ 10,000 K) and the star’s temperature (∼26,500 K). The radial velocity measured from the emission lines was Vr=141±7 km s−1. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

11 pages, 479 KiB  
Article
HR 4049: A Spectroscopic Analysis of a Post-AGB Object
by Shakhida T. Nurmakhametova, Nadezhda L. Vaidman, Anatoly S. Miroshnichenko, Azamat A. Khokhlov, Aldiyar T. Agishev, Berik S. Yermekbayev, Stephen Danford and Alicia N. Aarnio
Galaxies 2025, 13(2), 26; https://doi.org/10.3390/galaxies13020026 - 22 Mar 2025
Cited by 1 | Viewed by 629
Abstract
A new spectroscopic study of HR 4049, a post-AGB star in a binary system, based on échelle spectra taken between 2019 and 2025 with the 0.81 m telescope of the Three College Observatory (North Carolina, USA) at a resolution of R ≈ 12,000 [...] Read more.
A new spectroscopic study of HR 4049, a post-AGB star in a binary system, based on échelle spectra taken between 2019 and 2025 with the 0.81 m telescope of the Three College Observatory (North Carolina, USA) at a resolution of R ≈ 12,000 is reported. A cross-correlation analysis of 73 spectra of a single C i multiplet in the 4760–4780 Å range yielded the following orbital parameters: the orbital period P=428.474±0.002 days, eccentricity e=0.29±0.01, argument of periastron ω=242.3±0.3, epoch of periastron T0=2,458,383.2±0.6, heliocentric systemic radial velocity γ=30.12±0.09 km s−1, and semi-amplitude of the radial velocity curve K1=15.52±0.13 km s−1. Phase-dependent variations of the Hα line profile indicate dynamic processes in the circumstellar environment. The luminosity of HR 4049 was refined using the Gaia EDR3 parallax (0.71±0.10 mas), corresponding to a distance of 1397±170 pc, and the average visual magnitude in the brightest state (mV=5.35 mag). The derived luminosity, log(L/L)=4.22±0.12, suggests an initial mass of 3.0–4.0 M. Analysis of the mass function and most probable orbital inclinations (60°–75°) leads to current masses of 0.75M for the primary and 0.700.82M for the secondary component. The results confirm the system’s long-term orbital stability and provide further insights for future research into the nature of post-AGB binaries. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

10 pages, 2792 KiB  
Article
Enhancement of Spin Wave Transmission Through Antiferromagnet in Pt/NiO/CoFeB Heterostructure
by Wei Shi, Yangkai Wang, Zhixin Liu, Yilin Pei, Qiuping Huang, Zhengping Fu, Jianlin Wang and Yalin Lu
Magnetochemistry 2025, 11(2), 7; https://doi.org/10.3390/magnetochemistry11020007 - 22 Jan 2025
Cited by 1 | Viewed by 1412
Abstract
A significant enhancement of the spin current transmission through the antiferromagnetic insulating material NiO in Pt/NiO/CoFeB heterostructures was observed in this work. The ultrafast spin currents excited by laser pulses were injected into the Pt layers after passing through the NiO layers, and [...] Read more.
A significant enhancement of the spin current transmission through the antiferromagnetic insulating material NiO in Pt/NiO/CoFeB heterostructures was observed in this work. The ultrafast spin currents excited by laser pulses were injected into the Pt layers after passing through the NiO layers, and then transient charge currents were generated via the inverse spin Hall effect (ISHE), leading to a terahertz (THz) emission from the structure. The emitted THz signals were measured using electro-optic sampling with a ZnTe crystal. Thin NiO layers remarkably enhanced the THz signal amplitude, suggesting high spin transfer efficiency in NiO, and lighting a direction to ameliorate the spintronic THz emitter. The variable temperature measurements showed the amplitude had a maximum near the Néel temperature (TN) of the NiO layer with a specific thickness. The results of phase difference suggested that the coherent evanescent spin wave-mediated transmission had a contribution below the TN of the NiO layer, while the thermal magnon-mediated transmission existed at all temperatures. Our results not only achieve an enhancement in the spintronic THz source but also provide a THz spectroscopic method to investigate the dynamics of the ultrafast spintronic phenomenon. Full article
(This article belongs to the Special Issue Spin Waves in Magnonic Crystals and Hybrid Ferromagnetic Structures)
Show Figures

Figure 1

15 pages, 3552 KiB  
Article
Fast Hadamard-Encoded 7T Spectroscopic Imaging of Human Brain
by Chan Hong Moon, Frank S. Lieberman, Hoby P. Hetherington and Jullie W. Pan
Tomography 2025, 11(1), 7; https://doi.org/10.3390/tomography11010007 - 13 Jan 2025
Viewed by 1593
Abstract
Background/Objectives: The increased SNR available at 7T combined with fast readout trajectories enables accelerated spectroscopic imaging acquisitions for clinical applications. In this report, we evaluate the performance of a Hadamard slice encoding strategy with a 2D rosette trajectory for multi-slice fast spectroscopic [...] Read more.
Background/Objectives: The increased SNR available at 7T combined with fast readout trajectories enables accelerated spectroscopic imaging acquisitions for clinical applications. In this report, we evaluate the performance of a Hadamard slice encoding strategy with a 2D rosette trajectory for multi-slice fast spectroscopic imaging at 7T. Methods: Moderate-TE (~40 ms) spin echo and J-refocused polarization transfer sequences were acquired with simultaneous Hadamard multi-slice excitations and rosette in-plane encoding. The moderate spin echo sequence, which targets singlet compounds (i.e., N-acetyl aspartate, creatine, and choline), uses cascaded multi-slice RF excitation pulses to minimize the chemical shift dispersion error. The J-refocused sequence targets coupled spin systems (i.e., glutamate and myo-inositol) using simultaneous multi-slice excitation to maintain the same TE across all slices. A modified Hadamard slice encoding strategy was used to decrease the peak RF pulse amplitude of the simultaneous multi-slice excitation pulse for the J-refocused acquisition. Results: The accuracy of multi-slice and single-slice rosette spectroscopic imaging (RSI) is comparable to conventional Cartesian-encoded spectroscopic imaging (CSI). Spectral analyses for the J-refocused studies of glutamate and myo-inositol show that the Cramer Rao lower bounds are not significantly different between the fast RSI and conventional CSI studies. Linear regressions of creatine/N-acetyl aspartate and glutamate/N-acetyl aspartate with tissue gray matter content are consistent with literature values. Conclusions: With minimal gradient demands and fast acquisition times, the 2.2 min to 9 min for single- to four-slice RSI acquisitions are well tolerated by healthy subjects and tumor patients, and show results that are consistent with clinical outcomes. Full article
(This article belongs to the Section Neuroimaging)
Show Figures

Figure 1

17 pages, 5124 KiB  
Article
Pulsation in Hot Main-Sequence Stars: Comparison of Observations with Models
by Luis A. Balona
Universe 2024, 10(12), 437; https://doi.org/10.3390/universe10120437 - 25 Nov 2024
Cited by 1 | Viewed by 1034
Abstract
The locations of hot pulsating variables in the H–R diagram are found using the effective temperatures derived from spectroscopic analysis and luminosities from Gaia parallaxes. Frequency peaks extracted from TESS photometry were used to compare with model predictions. A large number of stars [...] Read more.
The locations of hot pulsating variables in the H–R diagram are found using the effective temperatures derived from spectroscopic analysis and luminosities from Gaia parallaxes. Frequency peaks extracted from TESS photometry were used to compare with model predictions. A large number of stars with pulsation frequencies similar to δ Scuti variables were found between the predicted δ Scuti and β Cephei instability regions, contrary to the models. These Maia variables cannot be explained by rapid rotation. There is a serious mismatch between the observed and predicted frequencies for stars within the known δ Scuti instability strip. In δ Scuti and Maia stars, the frequency at the maximum amplitude as a function of the effective temperature was found to have a surprisingly well-defined upper envelope. The majority of γ Doradus stars were found within the δ Scuti instability strip. This is difficult to understand unless pulsational driving is non-linear. Non-linearity may also explain the huge variety in frequency patterns and the presence of low frequencies in hot δ Scuti stars. γ Doradus stars were found all along the main sequence and into the B-star region, where they merged with SPB variables. There seemed to be no distinct instability regions in the H–R diagram. It was concluded that current models do not offer a satisfactory description of observations. Full article
Show Figures

Figure 1

13 pages, 2631 KiB  
Article
Scattering and One Neutron Pick-Up Reaction on a 10B Target with Deuterons at an Energy of 14.5 MeV
by Nurzhan Saduyev, Maulen Nassurlla, Nassurlla Burtebayev, Stanislav Sakuta, Marzhan Nassurlla, Orazaly Kalikulov, Romazan Khojayev, Avganbek Sabidolda and Damir Issayev
Physics 2024, 6(3), 1098-1110; https://doi.org/10.3390/physics6030068 - 2 Sep 2024
Cited by 3 | Viewed by 1821
Abstract
The elastic and inelastic scattering of deuterons on 10B nuclei and the 10B(d, t)9B reaction were studied at a deuteron energy of 14.5 MeV. In inelastic scattering, differential cross-sections for transitions to 10B states at [...] Read more.
The elastic and inelastic scattering of deuterons on 10B nuclei and the 10B(d, t)9B reaction were studied at a deuteron energy of 14.5 MeV. In inelastic scattering, differential cross-sections for transitions to 10B states at excitation energies, Ex, of 0.718 MeV (1+), 2.154 MeV (1+), and 3.59 MeV (2+) were measured. The cross-sections of the (d, t) reaction were measured for the ground (3/2) and excited states of the 9B nucleus at Ex = 2.361 MeV (5/2) and 2.79 MeV (5/2+). An analysis of the corresponding angular distributions was carried out using the coupled channel method. As a result of the calculations, the values of the quadrupole deformation parameters (β2 ≈ 0.7 ± 0.1) for various transitions in the 10B nucleus in inelastic scattering were extracted. From the analysis of the (d, t) reaction, the values of spectroscopic amplitudes (SA = 0.67 and SA = 0.94) for transitions to the states of the 9B nucleus were extracted. The results obtained here, taking into account possible measurement errors, are in good agreement with the previously obtained data and the theoretical predictions. Full article
(This article belongs to the Section Atomic Physics)
Show Figures

Figure 1

22 pages, 16238 KiB  
Article
Spectroscopic Phenological Characterization of Mangrove Communities
by Christopher Small and Daniel Sousa
Remote Sens. 2024, 16(15), 2796; https://doi.org/10.3390/rs16152796 - 30 Jul 2024
Viewed by 1746
Abstract
Spaceborne spectroscopic imaging offers the potential to improve our understanding of biodiversity and ecosystem services, particularly for challenging and rich environments like mangroves. Understanding the signals present in large volumes of high-dimensional spectroscopic observations of vegetation communities requires the characterization of seasonal phenology [...] Read more.
Spaceborne spectroscopic imaging offers the potential to improve our understanding of biodiversity and ecosystem services, particularly for challenging and rich environments like mangroves. Understanding the signals present in large volumes of high-dimensional spectroscopic observations of vegetation communities requires the characterization of seasonal phenology and response to environmental conditions. This analysis leverages both spectroscopic and phenological information to characterize vegetation communities in the Sundarban riverine mangrove forest of the Ganges–Brahmaputra delta. Parallel analyses of surface reflectance spectra from NASA’s EMIT imaging spectrometer and MODIS vegetation abundance time series (2000–2022) reveal the spectroscopic and phenological diversity of the Sundarban mangrove communities. A comparison of spectral and temporal feature spaces rendered with low-order principal components and 3D embeddings from Uniform Manifold Approximation and Projection (UMAP) reveals similar structures with multiple spectral and temporal endmembers and multiple internal amplitude continua for both EMIT reflectance and MODIS Enhanced Vegetation Index (EVI) phenology. The spectral and temporal feature spaces of the Sundarban represent independent observations sharing a common structure that is driven by the physical processes controlling tree canopy spectral properties and their temporal evolution. Spectral and phenological endmembers reside at the peripheries of the mangrove forest with multiple outward gradients in amplitude of reflectance and phenology within the forest. Longitudinal gradients of both phenology and reflectance amplitude coincide with LiDAR-derived gradients in tree canopy height and sub-canopy ground elevation, suggesting the influence of surface hydrology and sediment deposition. RGB composite maps of both linear (PC) and nonlinear (UMAP) 3D feature spaces reveal a strong contrast between the phenological and spectroscopic diversity of the eastern Sundarban and the less diverse western Sundarban. Full article
(This article belongs to the Special Issue Remote Sensing of Land Surface Phenology II)
Show Figures

Figure 1

11 pages, 6110 KiB  
Article
Investigation of Ripple Formation on Surface of Silicon by Low-Energy Gallium Ion Bombardment
by Márk Windisch, Dániel Selmeczi, Ádám Vida and Zoltán Dankházi
Nanomaterials 2024, 14(13), 1124; https://doi.org/10.3390/nano14131124 - 29 Jun 2024
Cited by 1 | Viewed by 1211
Abstract
Regular wave patterns were created by a 2 kV gallium ion on Si(111) monocrystals at incidence angles between 60° and 80° with respect to the surface normal. The characteristic wavelength and surface roughness of the structured surfaces were determined to be between 35–75 [...] Read more.
Regular wave patterns were created by a 2 kV gallium ion on Si(111) monocrystals at incidence angles between 60° and 80° with respect to the surface normal. The characteristic wavelength and surface roughness of the structured surfaces were determined to be between 35–75 nm and 0.5–2.5 nm. The local slope distribution of the created periodic structures was also studied. These topography results were compared with the predictions of the Bradley–Harper model. The amorphised surface layers were investigated by a spectroscopic ellipsometer. According to the results, the amorphised thicknesses were changed in the range of 8 nm to 4 nm as a function of ion incidence angles. The reflectance of the structured surfaces was simulated using ellipsometric results and measured with a reflectometer. Based on the spectra, a controlled modification of reflectance within 45% and 50% can be achieved on Si(111) at 460 nm wavelength. According to the measured results, the characteristic sizes (periodicity and amplitude) and optical property of silicon can be fine-tuned by low-energy focused ion irradiation at the given interval of incidence angles. Full article
Show Figures

Figure 1

16 pages, 2850 KiB  
Article
Self-Association and Microhydration of Phenol: Identification of Large-Amplitude Hydrogen Bond Librational Modes
by Dmytro Mihrin, Karen Louise Feilberg and René Wugt Larsen
Molecules 2024, 29(13), 3012; https://doi.org/10.3390/molecules29133012 - 25 Jun 2024
Cited by 4 | Viewed by 1721
Abstract
The self-association mechanisms of phenol have represented long-standing challenges to quantum chemical methodologies owing to the competition between strongly directional intermolecular hydrogen bonding, weaker non-directional London dispersion forces and C–H⋯π interactions between the aromatic rings. The present work explores these subtle self-association [...] Read more.
The self-association mechanisms of phenol have represented long-standing challenges to quantum chemical methodologies owing to the competition between strongly directional intermolecular hydrogen bonding, weaker non-directional London dispersion forces and C–H⋯π interactions between the aromatic rings. The present work explores these subtle self-association mechanisms of relevance for biological molecular recognition processes via spectroscopic observations of large-amplitude hydrogen bond librational modes of phenol cluster molecules embedded in inert neon “quantum” matrices complemented by domain-based local pair natural orbital-coupled cluster DLPNO-CCSD(T) theory. The spectral signatures confirm a primarily intermolecular O-H⋯H hydrogen-bonded structure of the phenol dimer strengthened further by cooperative contributions from inter-ring London dispersion forces as supported by DLPNO-based local energy decomposition (LED) predictions. In the same way, the hydrogen bond librational bands observed for the trimeric cluster molecule confirm a pseudo-C3 symmetric cyclic cooperative hydrogen-bonded barrel-like potential energy minimum structure. This structure is vastly different from the sterically favored “chair” conformations observed for aliphatic alcohol cluster molecules of the same size owing to the additional stabilizing London dispersion forces and C–H⋯π interactions between the aromatic rings. The hydrogen bond librational transition observed for the phenol monohydrate finally confirms that phenol acts as a hydrogen bond donor to water in contrast to the hydrogen bond acceptor role observed for aliphatic alcohols. Full article
Show Figures

Figure 1

14 pages, 3537 KiB  
Article
A Novel Microfluidics Droplet-Based Interdigitated Ring-Shaped Electrode Sensor for Lab-on-a-Chip Applications
by Salomão Moraes da Silva Junior, Luiz Eduardo Bento Ribeiro, Fabiano Fruett, Johan Stiens, Jacobus Willibrordus Swart and Stanislav Moshkalev
Micromachines 2024, 15(6), 672; https://doi.org/10.3390/mi15060672 - 22 May 2024
Viewed by 1937
Abstract
This paper presents a comprehensive study focusing on the detection and characterization of droplets with volumes in the nanoliter range. Leveraging the precise control of minute liquid volumes, we introduced a novel spectroscopic on-chip microsensor equipped with integrated microfluidic channels for droplet generation, [...] Read more.
This paper presents a comprehensive study focusing on the detection and characterization of droplets with volumes in the nanoliter range. Leveraging the precise control of minute liquid volumes, we introduced a novel spectroscopic on-chip microsensor equipped with integrated microfluidic channels for droplet generation, characterization, and sensing simultaneously. The microsensor, designed with interdigitated ring-shaped electrodes (IRSE) and seamlessly integrated with microfluidic channels, offers enhanced capacitance and impedance signal amplitudes, reproducibility, and reliability in droplet analysis. We were able to make analyses of droplet length in the range of 1.0–6.0 mm, velocity of 0.66–2.51 mm/s, and volume of 1.07 nL–113.46 nL. Experimental results demonstrated that the microsensor’s performance is great in terms of droplet size, velocity, and length, with a significant signal amplitude of capacitance and impedance and real-time detection capabilities, thereby highlighting its potential for facilitating microcapsule reactions and enabling on-site real-time detection for chemical and biosensor analyses on-chip. This droplet-based microfluidics platform has great potential to be directly employed to promote advances in biomedical research, pharmaceuticals, drug discovery, food engineering, flow chemistry, and cosmetics. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

27 pages, 727 KiB  
Article
Induced Isotensor Interactions in Heavy-Ion Double-Charge-Exchange Reactions and the Role of Initial and Final State Interactions
by Horst Lenske, Jessica Bellone, Maria Colonna, Danilo Gambacurta and José-Antonio Lay
Universe 2024, 10(2), 93; https://doi.org/10.3390/universe10020093 - 16 Feb 2024
Cited by 2 | Viewed by 1728
Abstract
The role of initial state (ISI) and final state (FSI) ion–ion interactions in heavy-ion double-charge-exchange (DCE) reactions A(Z,N)A(Z±2,N2) are studied for double single-charge-exchange (DSCE) reactions given by [...] Read more.
The role of initial state (ISI) and final state (FSI) ion–ion interactions in heavy-ion double-charge-exchange (DCE) reactions A(Z,N)A(Z±2,N2) are studied for double single-charge-exchange (DSCE) reactions given by sequential actions of the isovector nucleon–nucleon (NN) T-matrix. In momentum representation, the second-order DSCE reaction amplitude is shown to be given in factorized form by projectile and target nuclear matrix elements and a reaction kernel containing ISI and FSI. Expanding the intermediate propagator in a Taylor series with respect to auxiliary energy allows us to perform the summation in the leading-order term over intermediate nuclear states in closure approximation. The nuclear matrix element attains a form given by the products of two-body interactions directly exciting the n2p2 and p2n2 DCE transitions in the projectile and the target nucleus, respectively. A surprising result is that the intermediate propagation induces correlations between the transition vertices, showing that DSCE reactions are a two-nucleon process that resembles a system of interacting spin–isospin dipoles. Transformation of the DSCE NN T-matrix interactions from the reaction theoretical t-channel form to the s-channel operator structure required for spectroscopic purposes is elaborated in detail, showing that, in general, a rich spectrum of spin scalar, spin vector and higher-rank spin tensor multipole transitions will contribute to a DSCE reaction. Similarities (and differences) to two-neutrino double-beta decay (DBD) are discussed. ISI/FSI distortion and absorption effects are illustrated in black sphere approximation and in an illustrative application to data. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

12 pages, 7887 KiB  
Article
Regime Map of the Effective Medium Approximation Modelling of Micro-Rough Surfaces in Ellipsometry
by Meijiao Huang, Liang Guo and Fengyi Jiang
Sensors 2024, 24(4), 1242; https://doi.org/10.3390/s24041242 - 15 Feb 2024
Cited by 2 | Viewed by 1716
Abstract
In this work, we discuss the precision of the effective medium approximation (EMA) model in the data analysis of spectroscopic ellipsometry (SE) for solid materials with micro-rough surfaces by drawing the regime map. The SE parameters ψ (amplitude ratio) and Δ (phase difference) [...] Read more.
In this work, we discuss the precision of the effective medium approximation (EMA) model in the data analysis of spectroscopic ellipsometry (SE) for solid materials with micro-rough surfaces by drawing the regime map. The SE parameters ψ (amplitude ratio) and Δ (phase difference) of the EMA model were solved by rigorous coupled-wave analysis. The electromagnetic response of the actual surfaces with micro roughness was simulated by the finite-difference time-domain method, which was validated by the experimental results. The regime maps associated with the SE parameters and optical constants n (refractive index) and k (extinction coefficient) of the EMA model were drawn by a comparison of the actual values with the model values. We find that using EMA to model micro-rough surfaces with high absorption can result in a higher precision of the amplitude ratio and extinction coefficient. The precisions of ψ, Δ, n and k increase as the relative roughness σ/λ (σ: the root mean square roughness, λ: the incident wavelength) decreases. The precision of ψ has an influence on the precision of k and the precision of Δ affects the precision of n. Changing σ alone has little effect on the regime maps of the relative errors of SE parameters and optical constants. A superior advantage of drawing the regime map is that it enables the clear determination as to whether EMA is able to model the rough surfaces or not. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop