Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = solifuge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
67 pages, 32566 KiB  
Article
Advances in Understanding the Karyotype Evolution of Tetrapulmonata and Two Other Arachnid Taxa, Ricinulei and Solifugae
by Jiří Král, Alexandr Sember, Klára Divišová, Tereza Kořínková, Azucena C. Reyes Lerma, Ivalú M. Ávila Herrera, Martin Forman, František Šťáhlavský, Jana Musilová, Sabrina Torres Kalme, José G. Palacios Vargas, Magda Zrzavá, Iva Vrbová, Jairo A. Moreno-González, Paula E. Cushing, Alexander V. Gromov, Štěpánka Šebestiánová, Vendula Bohlen Šlechtová, Lorenzo Prendini and Tharina L. Bird
Genes 2025, 16(2), 207; https://doi.org/10.3390/genes16020207 - 8 Feb 2025
Cited by 2 | Viewed by 1890
Abstract
Background/Objectives: Arachnids are a megadiverse arthropod group. The present study investigated the chromosomes of pedipalpid tetrapulmonates (orders Amblypygi, Thelyphonida, Schizomida) and two arachnid orders of uncertain phylogenetic placement, Ricinulei and Solifugae, to reconstruct their karyotype evolution. Except for amblypygids, the cytogenetics of these [...] Read more.
Background/Objectives: Arachnids are a megadiverse arthropod group. The present study investigated the chromosomes of pedipalpid tetrapulmonates (orders Amblypygi, Thelyphonida, Schizomida) and two arachnid orders of uncertain phylogenetic placement, Ricinulei and Solifugae, to reconstruct their karyotype evolution. Except for amblypygids, the cytogenetics of these arachnid orders was almost unknown prior to the present study. Methods: Chromosomes were investigated using methods of standard (Giemsa-stained preparations, banding techniques) and molecular cytogenetics (fluorescence in situ hybridization, comparative genomic hybridization). Results and Conclusions: New data for 38 species, combined with previously published data, suggest that ancestral arachnids possessed low to moderate 2n (22–40), monocentric chromosomes, one nucleolus organizer region (NOR), low levels of heterochromatin and recombinations, and no or homomorphic sex chromosomes. Karyotypes of Pedipalpi and Solifugae diversified via centric fusions, pericentric inversions, and changes in the pattern of NORs and, in solifuges, also through tandem fusions. Some solifuges display an enormous amount of constitutive heterochromatin and high NOR number. It is hypothesized that the common ancestor of amblypygids, thelyphonids, and spiders exhibited a homomorphic XY system, and that telomeric heterochromatin and NORs were involved in the evolution of amblypygid sex chromosomes. The new findings support the Cephalosomata clade (acariforms, palpigrades, and solifuges). Hypotheses concerning the origin of acariform holocentric chromosomes are presented. Unlike current phylogenetic hypotheses, the results suggest a sister relationship between Schizomida and a clade comprising other tetrapulmonates as well as a polyploidization in the common ancestor of the clade comprising Araneae, Amblypygi, and Thelyphonida. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Cytogenomics")
Show Figures

Figure 1

14 pages, 3890 KiB  
Article
Seasonal Distribution and Diversity of Non-Insect Arthropods in Arid Ecosystems: A Case Study from the King Abdulaziz Royal Reserve, Kingdom Saudi Arabia
by Taghreed A. Alsaleem, Moutaman Ali Kehail, Abdulrahaman S. Alzahrani, Turki Alsaleem, Areej H. Alkhalifa, Abdulaziz M. Alqahtani, Mohammed H. Altalhi, Hussein H. Alkhamis, Abdullah M. Alowaifeer and Abdulwahed Fahad Alrefaei
Biology 2024, 13(12), 1082; https://doi.org/10.3390/biology13121082 - 22 Dec 2024
Cited by 1 | Viewed by 1209
Abstract
The biodiversity of invertebrate animals is largely affected by climatic changes. This study evaluates the seasonal abundance and diversity of non-insect arthropods in the King Abdulaziz Royal Reserve (KARR), Saudi Arabia, over four collection periods (summer, autumn, winter, and spring) during 2023. Sampling [...] Read more.
The biodiversity of invertebrate animals is largely affected by climatic changes. This study evaluates the seasonal abundance and diversity of non-insect arthropods in the King Abdulaziz Royal Reserve (KARR), Saudi Arabia, over four collection periods (summer, autumn, winter, and spring) during 2023. Sampling was conducted across multiple sites in the reserve using both active (manual collection and active surveying for the diurnal species) and passive (pitfall traps and malaise traps for the nocturnal species) methods. A total of 586 non-insect arthropod specimens were collected, representing four classes: Arachnida, Chilopoda, Branchiopoda, and Malacostraca. The results show that the most abundant species was the jumping spider Plexippus paykulli, which dominated collections across two seasons, with a peak abundance of 50.7% in late summer. Seasonal variations in non-insect arthropod diversity were observed, with a lower diversity recorded during January–March (4 species, and this may be attributed to this period revealing the lowest temperature reading recorded during the study period) and higher diversity in August–September (end of summer) and October–November (mid of autumn), with 14 species. Scorpions, particularly species from the families Buthidae and Scorpionidae, were common during the summer months, while solifuges and centipedes showed sporadic occurrences across seasons. These findings align with the results for arthropod distribution in arid regions, with temperature and resource availability as key drivers of biodiversity in desert environments because of their direct effects on the biochemical processes of these creatures. This study contributes valuable baseline data on the non-insect arthropod fauna of the KARR. The insights gained from this study can aid in conservation efforts and provide a foundation for further research on non-insect arthropod ecology in arid landscapes. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

40 pages, 18114 KiB  
Article
Arachnid Assemblage Composition Diverge between South- and North-Facing Slopes in a Levantine Microgeographic Site
by Meir Finkel, Amit Ben-Asher, Gur Shmula, Igor Armiach Steinpress, Zeana Ganem, Rami Hammouri, Erika Garcia, Tamás Szűts and Efrat Gavish-Regev
Diversity 2024, 16(9), 540; https://doi.org/10.3390/d16090540 - 3 Sep 2024
Cited by 1 | Viewed by 1961
Abstract
Local microgeographic sites subdivided by sharp ecological and climatic contrasts are important platforms for measuring biodiversity patterns and inferring the possible effect of climatic and ecological variables on species distributions and habitat use. Here, we report results from 24 months (September 2019–August 2021) [...] Read more.
Local microgeographic sites subdivided by sharp ecological and climatic contrasts are important platforms for measuring biodiversity patterns and inferring the possible effect of climatic and ecological variables on species distributions and habitat use. Here, we report results from 24 months (September 2019–August 2021) of continuous pitfall trapping collection in Lower Nahal Keziv, Western Upper Galilee, Israel (“Evolution Canyon” II (hereafter—EC II)). This site receives an average annual rainfall of 784 mm and contains two slopes that differ markedly by solar radiation and plant formation. The first is the south-facing slope (SFS), which is characterized as a semiarid garrigue and open grassland. The second is the contrasting north-facing slope (NFS), which is characterized by a more humid East Mediterranean forest. The slopes are separated by a narrow valley bottom (VB). Analysis of ca. 1750 arachnid specimens, collected from 70 pitfall traps along the slopes and valley, indicates significantly different arachnid assemblages between the NFS and SFS, likely due to the differences in solar radiation that affect plant-cover percentage, which in turn affects the arachnid assemblage composition. In addition to 98 arachnid taxa collected and identified to species and morphospecies level, this study resulted in the discovery of two species new to science, which are described as part of this publication (100 arachnid species and 11 additional taxa that were not identified to species, a total of 111 taxa). Our study, moreover, contributes new ecological data on the spatial and temporal distribution of arachnids, and therefore attests to the importance of year-round sampling in an understudied region. Overall, our study enables a better understanding of arachnid diversity and their distributions and serves as a reference for future research aimed at testing the effect of climate change and other environmental factors that influence arachnid assemblages in natural habitats. Full article
(This article belongs to the Special Issue State-of-the-Art Mediterranean Soil Arthropods Diversity)
Show Figures

Graphical abstract

Back to TopTop