Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = solar flat plate liquid collector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10487 KiB  
Article
Study of Ionanofluids Behavior in PVT Solar Collectors: Determination of Thermal Fields and Characteristic Length by Means of HEATT® Platform
by Mariano Alarcón, Juan-Pedro Luna-Abad, Manuel Seco-Nicolás, Imane Moulefera and Gloria Víllora
Energies 2024, 17(22), 5703; https://doi.org/10.3390/en17225703 - 14 Nov 2024
Cited by 1 | Viewed by 854
Abstract
Solar electric and solar thermal energies are often considered as part of the solution to the current energy emergency. The pipes of flat plate solar devices are normally heated by their upper surfaces giving rise to an asymmetric temperature field in the bulk [...] Read more.
Solar electric and solar thermal energies are often considered as part of the solution to the current energy emergency. The pipes of flat plate solar devices are normally heated by their upper surfaces giving rise to an asymmetric temperature field in the bulk of the fluid, which influences the heat transfer process. In the present work, a study of the characteristic length of tubes, or most efficient distance at which heat transfer occurs, in flat photovoltaic-thermal (PVT) hybrid solar devices has been carried out using three heat transfer fluids: water, [Emim]Ac ionic liquid and ionanofluid of graphene nanoparticles suspended in the former ionic liquid. The mean objective of the study was to know whether the heat transfer occurs in optimal conditions. Experimental measurements have been made on a commercial PVT device, and numerical simulations have been performed using the HEATT® platform to determine the characteristic length of the process. The tests conducted showed a clear improvement in the temperature jump of the fluid inside the collector when INF is used compared to water and ionic liquid and even a higher overall energy efficiency. Electricity generation is not greatly affected by the fluid used, although it is slightly higher when water is used. Slower fluid velocities are recommended if high fluid outlet temperatures are the goal of the application, but this penalizes the overall thermal energy production. The characteristic process length is not typically achieved in parallel tube PVT collectors with ordinary flow rates, which would require a speed, and consequently, a flow rate, about 10 times lower, which penalizes the performance (up to four times), although it increases the fluid outlet temperature by 234%, which can be very interesting in certain applications. Ionanofluids may in the medium term become an alternative to water in flat plates or vacuum solar collectors for applications with temperatures close to or above 100 °C, when their costs will hopefully fall. The results and methodology developed in this work are applicable to solar thermal collectors other than PVT collectors. Full article
(This article belongs to the Special Issue Recent Developments in Solar Thermal Energy)
Show Figures

Figure 1

22 pages, 7775 KiB  
Article
Numerical and Experimental Determination of Selected Performance Indicators of the Liquid Flat-Plate Solar Collector under Outdoor Conditions
by Wiesław Zima, Łukasz Mika and Karol Sztekler
Energies 2024, 17(14), 3454; https://doi.org/10.3390/en17143454 - 13 Jul 2024
Cited by 2 | Viewed by 1338
Abstract
The paper proposes applying an in-house mathematical model of a liquid flat-plate solar collector to calculate the collector time constant. The described model, proposed for the first time in an earlier study, is a one-dimensional distributed parameter model enabling simulations of the collector [...] Read more.
The paper proposes applying an in-house mathematical model of a liquid flat-plate solar collector to calculate the collector time constant. The described model, proposed for the first time in an earlier study, is a one-dimensional distributed parameter model enabling simulations of the collector operation under arbitrarily variable boundary conditions. The model is based on the solution of energy balance equations for all collector components. The formulated differential equations are solved iteratively using an implicit difference scheme. To obtain a stable numerical solution, it is necessary to use appropriate steps of time and spatial division. These were found by comparing the results obtained from the model with the results of the analytical solution available in the literature for the transient state, which constitutes the novelty of the present study. The accuracy of the results obtained from the model was verified experimentally by comparing the measured and calculated history of the fluid temperature at the outlet of the collector. The calculation of the collector time constant is proposed in the paper as an example of the model’s practical application. The results of the time constant calculation were compared with the values obtained experimentally on the test stand. This is another novelty of the presented research. The analysed collector instantaneous efficiency was then calculated for selected outdoor conditions. The presented mathematical model can also be used to verify the correctness of the collector operation. By comparing, on an ongoing basis, the measured and calculated values of the fluid temperature at the collector outlet, conclusions can be drawn about the process of solar glass fouling or glycol gelling. The simplicity of the model and the low computational demands enable such comparisons in an online mode. Full article
(This article belongs to the Special Issue Solar Energy and Resource Utilization)
Show Figures

Figure 1

16 pages, 2738 KiB  
Article
Experimental Evaluation of an Innovative Non-Metallic Flat Plate Solar Collector
by Radim Rybár, Martin Beer, Tawfik Mudarri, Sergey Zhironkin, Kamila Bačová and Jaroslav Dugas
Energies 2021, 14(19), 6240; https://doi.org/10.3390/en14196240 - 30 Sep 2021
Cited by 2 | Viewed by 2213
Abstract
The present article deals with the concept of the non-metallic flat plate liquid solar collector and its evaluation. The innovative concept lies in the elimination of metal parts of the solar collector and their replacement by the foam glass block, which significantly reduces [...] Read more.
The present article deals with the concept of the non-metallic flat plate liquid solar collector and its evaluation. The innovative concept lies in the elimination of metal parts of the solar collector and their replacement by the foam glass block, which significantly reduces the energy and material demands of the production process. The evaluation of the collector took place in two phases, the first was focused on the numerical evaluation, which resulted in the compilation of a theoretical curve of the efficiency of the solar collector. The second phase was focused on verifying the basic functionality of the concept based on the results obtained from experimental tests of the collector, which confirmed the functionality of the concept and revealed several areas that will need to be addressed in the further development of the prototype. Full article
(This article belongs to the Special Issue Green Economy and Sustainable Development)
Show Figures

Figure 1

52 pages, 5089 KiB  
Review
State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment
by Seyed Reza Shamshirgaran, Hussain H. Al-Kayiem, Korada V. Sharma and Mostafa Ghasemi
Sustainability 2020, 12(21), 9119; https://doi.org/10.3390/su12219119 - 2 Nov 2020
Cited by 18 | Viewed by 3626
Abstract
Emerging nanotechnology with solar collector technology has attracted the attention of researchers to enhance the performance of solar systems in order to develop efficient solar thermal systems for future sustainability. This paper chronologically reviews the various research works carried out on the performance [...] Read more.
Emerging nanotechnology with solar collector technology has attracted the attention of researchers to enhance the performance of solar systems in order to develop efficient solar thermal systems for future sustainability. This paper chronologically reviews the various research works carried out on the performance enhancement of nanofluid-filled flat-plate solar collectors (FPCs). Gaps in the radiation exergy models and maximum exergy of FPCs, the importance of pressure drops in collector manifolds in exergy analysis, and the economics of nanofluid-laden FPCs have been addressed. The necessity of replacing currently used chemically derived glycol products with a renewable-based glycol has not been reported in the current literature thoroughly, but it is pondered in the current paper. Moreover, the thermophysical properties of all common metal and metal oxide nanoparticles utilized in various studies are collected in this paper for the first time and can be referred to quickly as a data source for future studies. The different classical empirical correlations for the estimation of specific heat, density, conductivity, and viscosity of reported nanofluids and base liquids, i.e., water and its mixture with glycols, are also tabulated as a quick reference. Brief insights on different performance criteria and the utilized models of heat transfer, energy efficiency, exergy efficiency, and economic calculation of nanofluid-based FPCs are extracted. Most importantly, a summary of the current progress in the field of nanofluid-charged FPCs is presented appropriately within two tables. The tables contain the status of the main parameters in different research works. Finally, gaps in the literature are addressed and mitigation approaches are suggested for the future sustainability of nanofluid-laden FPCs. Full article
Show Figures

Figure 1

Back to TopTop