Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = soft wheat (Triticum aestivum L.)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1396 KB  
Article
Dose-Dependent Effect of the Polyamine Spermine on Wheat Seed Germination, Mycelium Growth of Fusarium Seed-Borne Pathogens, and In Vivo Fusarium Root and Crown Rot Development
by Tsvetina Nikolova, Dessislava Todorova, Tzenko Vatchev, Zornitsa Stoyanova, Valya Lyubenova, Yordanka Taseva, Ivo Yanashkov and Iskren Sergiev
Agriculture 2025, 15(15), 1695; https://doi.org/10.3390/agriculture15151695 - 6 Aug 2025
Cited by 1 | Viewed by 1384
Abstract
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus [...] Read more.
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus Fusarium. This situation threatens yield and grain quality through root and crown rot. While conventional chemical fungicides face resistance issues and environmental concerns, biological alternatives like seed priming with natural metabolites are gaining attention. Polyamines, including putrescine, spermidine, and spermine, are attractive priming agents influencing plant development and abiotic stress responses. Spermine in particular shows potential for in vitro antifungal activity against Fusarium. Optimising spermine concentration for seed priming is crucial to maximising protection against Fusarium infection while ensuring robust plant growth. In this research, we explored the potential of the polyamine spermine as a seed treatment to enhance wheat resilience, aiming to identify a sustainable alternative to synthetic fungicides. Our findings revealed that a six-hour seed soak in spermine solutions ranging from 0.5 to 5 mM did not delay germination or seedling growth. In fact, the 5 mM concentration significantly stimulated root weight and length. In complementary in vitro assays, we evaluated the antifungal activity of spermine (0.5–5 mM) against three Fusarium species. The results demonstrated complete inhibition of Fusarium culmorum growth at 5 mM spermine. A less significant effect on Fusarium graminearum and little to no impact on Fusarium oxysporum were found. The performed analysis revealed that the spermine had a fungistatic effect against the pathogen, retarding the mycelium growth of F. culmorum inoculated on the seed surface. A pot experiment with Bulgarian soft wheat cv. Sadovo-1 was carried out to estimate the effect of seed priming with spermine against infection with isolates of pathogenic fungus F. culmorum on plant growth and disease severity. Our results demonstrated that spermine resulted in a reduced distribution of F. culmorum and improved plant performance, as evidenced by the higher fresh weight and height of plants pre-treated with spermine. This research describes the efficacy of spermine seed priming as a novel strategy for managing Fusarium root and crown rot in wheat. Full article
Show Figures

Figure 1

22 pages, 10985 KB  
Article
Phenotyping Wheat Kernel Symmetry as a Consequence of Different Agronomic Practices
by Tatiana S. Aniskina, Kirill A. Sudarikov, Nikita A. Prisazhnoy, Ishen N. Besaliev, Alexander A. Panfilov, Nelli S. Reger, Tatyana Kormilitsyna, Antonina A. Novikova, Alexander A. Gulevich, Svyatoslav V. Lebedev, Pyotr A. Vernik and Ekaterina N. Baranova
Symmetry 2024, 16(5), 548; https://doi.org/10.3390/sym16050548 - 2 May 2024
Cited by 1 | Viewed by 1612
Abstract
The use of instrumental methods of analysis in the assessment of indices that record changes in symmetry in the structure of grains to evaluate the quality of durum and soft wheat grain is currently considered a search tool that will allow us to [...] Read more.
The use of instrumental methods of analysis in the assessment of indices that record changes in symmetry in the structure of grains to evaluate the quality of durum and soft wheat grain is currently considered a search tool that will allow us to obtain previously unavailable data by finding correlations associated with differences in the shape and ratio of starch granules in conditionally symmetrical and asymmetrical wheat fruits (kernels) formed in different field conditions and with different genotypes. Indicators that had previously shown their effectiveness were used to analyze the obviously complex unique material obtained as a result of growing under critically unique sowing conditions in 2022, which affected the stability of grain development and filling. For the evaluation, a typical agronomic comparative experiment was chosen, which was used to evaluate the soil tillage practices (fallow, non-moldboard loosening, and plowing) and sowing dates (early and after excessive rainfalls), which made it possible to analyze a wider range of factors influencing the studied indices. The soil tillage methods were found to affect the uniformity of kernel fullness and their symmetry, and the sowing dates did not lead to significant differences. This study presents detailed changes in the shape of the middle cut of a wheat kernel, associated with assessing the efficiency of kernel filling and the symmetrical distribution of storage substances under the influence of external and internal physical factors that affect the formation of the wheat kernel. The data obtained may be of interest to breeders and developers of predictive phenotyping programs for cereal grain and seeds of other crops, as well as plant physiologists. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Life Sciences: Feature Papers 2024)
Show Figures

Figure 1

26 pages, 2532 KB  
Article
Exploitation of Black Olive (Olea europaea L. cv. Piantone di Mogliano) Pomace for the Production of High-Value Bread
by Federica Cardinali, Luca Belleggia, Anna Reale, Martina Cirlini, Floriana Boscaino, Tiziana Di Renzo, Lorenzo Del Vecchio, Natascia Cavalca, Vesna Milanović, Cristiana Garofalo, Cristiana Cesaro, Giorgia Rampanti, Andrea Osimani and Lucia Aquilanti
Foods 2024, 13(3), 460; https://doi.org/10.3390/foods13030460 - 1 Feb 2024
Cited by 13 | Viewed by 2725
Abstract
In this study, the morpho-textural features, total phenolic content (TPC), and antioxidant capacity (AOC) of bread fortified with olive (Olea europaea L.) pomace were evaluated. Fresh olive pomace was subjected to microbiological and chemical (TPC, AOC, and fiber) analyses; then, the same [...] Read more.
In this study, the morpho-textural features, total phenolic content (TPC), and antioxidant capacity (AOC) of bread fortified with olive (Olea europaea L.) pomace were evaluated. Fresh olive pomace was subjected to microbiological and chemical (TPC, AOC, and fiber) analyses; then, the same olive pomace was analyzed during 1 to 6 months of storage at 4 °C or −20 °C. All olive pomace samples were used in 10%, 15%, or 20% amounts to produce type 0 soft wheat (Triticum aestivum) and whole wheat bread samples. The volatile organic compounds (VOCs) in the bread samples were also analyzed to assess the effect of the addition of the olive pomace on the flavor profile of the baked products. The TPC and AOC evaluation of olive pomace showed no differences among the analyzed samples (fresh, refrigerated, or frozen). Regarding the bread containing olive pomace, the specific volume was not affected by the amount or the storage methods of the added pomace. Bread samples produced with soft wheat flour showed the lowest hardness values relative to those produced with whole wheat flour, irrespective of the amount or storage method of the olive pomace. Regarding color, the crust and crumb of the bread samples containing 20% olive pomace were significantly darker. The bread samples containing 20% olive pomace had the highest TPC. The bread samples with fresh olive pomace were characterized by terpenoids, ketones, and aldehydes, whereas the bread samples containing refrigerated olive pomace were characterized by alcohols (mainly ethanol), acids, esters, and acetate. Finally, the bread samples with frozen olive pomace showed a volatile profile similar to that of bread produced with fresh olive pomace. Olive pomace was shown to be a suitable ingredient for producing bread with high nutritional value. Full article
Show Figures

Figure 1

14 pages, 1612 KB  
Article
Effect of a Combination of Ultrasonic Germination and Fermentation Processes on the Antioxidant Activity and γ-Aminobutyric Acid Content of Food Ingredients
by Natalya Naumenko, Rinat Fatkullin, Natalia Popova, Alena Ruskina, Irina Kalinina, Roman Morozov, Vyacheslav V. Avdin, Anastasia Antonova and Elizaveta Vasileva
Fermentation 2023, 9(3), 246; https://doi.org/10.3390/fermentation9030246 - 3 Mar 2023
Cited by 14 | Viewed by 3368
Abstract
Whole-grain food ingredients enable the most balanced food products to be obtained, thus forming an important part of a healthy and sustainable diet. Wheat and barley grains are a traditional source of food ingredients for breads, breakfasts, drinks, and snacks in Russia. Such [...] Read more.
Whole-grain food ingredients enable the most balanced food products to be obtained, thus forming an important part of a healthy and sustainable diet. Wheat and barley grains are a traditional source of food ingredients for breads, breakfasts, drinks, and snacks in Russia. Such foods are suitable for all ages with many health benefits. However, the modern metropolitan citizen consumes large quantities of refined cereal products, thus impoverishing their diet. An alternative in dietary fortification could be sprouted and fermented food ingredients with an increased nutritional value. The present work was carried out to study the effect of a combination of germination with ultrasound treatment and fermentation with a complex starter of cereal crops on antioxidant activity and γ-aminobutyric acid content of food ingredients with the possibility of using them in the matrix of food products. In order to obtain germinated food ingredients, we used crops with the highest yield in the Ural region (Russia): two samples of soft spring wheat (Triticum aestivum L.) and a sample of spring barley grain (Hordeum vulgare L.). Obtaining food ingredients was divided into successive stages: ultrasonic treatment (22 ± 1.25 kHz) was performed by means of changing power and length of time (245 W/L, intensity for 5 min); germination and fermentation used complex starter “Vivo Probio”. The proposed technology of germination with haunting fermentation of cereal crops resulted in food ingredients with a more uniform distribution of granulometric composition, a low proportion of fine particles (4.62–104.60 µm) (p < 0.05) and large particles (418.60–592.00 µm) (p < 0.05). The particle size range (31.11–248.90 μm) (p < 0.05) was predominant. The germination and fermentation process resulted in 26 to 57% (p < 0.05) lower phytic acid content, 35 to 68% (p < 0.05) higher flavonoid content, 31 to 51% (p < 0.05) higher total antioxidant activity, 42.4 to 93.9% (p < 0.05) higher assimilability, and 3.1 to 4.7 times (p < 0.05) higher γ-aminobutyric acid content, which will allow production of food products with pronounced preventive action. The data was analyzed via one-way ANOVA analysis of variance using the free web-based software. The combination of the germination process with ultrasound treatment and subsequent fermentation with a complex starter can be used to support the development of healthful food products with increased GABA and antioxidant activity. Full article
(This article belongs to the Special Issue Assessment of the Quality and Safety of Fermented Foods)
Show Figures

Figure 1

18 pages, 1254 KB  
Article
GGE Biplot Analysis to Explore the Adaption Potential of Italian Common Wheat Genotypes
by Sara Bosi, Lorenzo Negri, Antonio Fakaros, Giulia Oliveti, Anne Whittaker and Giovanni Dinelli
Sustainability 2022, 14(2), 897; https://doi.org/10.3390/su14020897 - 13 Jan 2022
Cited by 22 | Viewed by 3392
Abstract
Given the substantial variation in global wheat yield, insufficient research in cultivar selection for climate change, and the lack of suitable germplasm in sustainable agroecosystems, there is a requisite for soft wheat genotypes, with stable grain yield as well as quality parameters. The [...] Read more.
Given the substantial variation in global wheat yield, insufficient research in cultivar selection for climate change, and the lack of suitable germplasm in sustainable agroecosystems, there is a requisite for soft wheat genotypes, with stable grain yield as well as quality parameters. The present study was aimed at genotype evaluation (GGE biplot for “mean performance versus stability”) not only for yield, but also for technological, phytosanitary and functional quality parameters of 24 Triticum aestivum L. genotypes (eight landraces, old and modern varieties, respectively) within a single organic farm location (Argelato, Emilia-Romagna, Italy) over three consecutive years. Overall, high yield stability was shown for the landraces and old varieties. In particular, the landraces Piave and Gamba di Ferro, as well as the old variety Verna, showed high stability with above-average means for numerous quality parameters of interest. Additionally, relative stability combined with above-average mean for quality parameters was also demonstrated for the high-yielding Gentil Bianco and Guà 113. Aside from Verna, these “unrecognized” resilient genotypes were also shown to meet the requisites for suitable germplasm in sustainable agroecosystems. Future potential utilization of these more stable landraces in addressing climate change would also ultimately facilitate the survival of valuable genetic resources. Full article
(This article belongs to the Special Issue Sustainable Organic Agriculture)
Show Figures

Figure 1

15 pages, 1791 KB  
Article
Impact of Nitrogen Rate in Conventional and Organic Production Systems on Yield and Bread Baking Quality of Soft Red Winter Wheat
by Ammar Al-Zubade, Timothy Phillips, Mark A. Williams, Krista Jacobsen and David Van Sanford
Agronomy 2021, 11(9), 1683; https://doi.org/10.3390/agronomy11091683 - 24 Aug 2021
Cited by 5 | Viewed by 2524
Abstract
Soft red winter wheat (SRW) is characterized by high yield and relatively low protein content. In Kentucky, there is growing demand from local artisan bread bakers for regionally produced flour, requiring production of grain with increased protein content and/or strength. The objective of [...] Read more.
Soft red winter wheat (SRW) is characterized by high yield and relatively low protein content. In Kentucky, there is growing demand from local artisan bread bakers for regionally produced flour, requiring production of grain with increased protein content and/or strength. The objective of this two-year field experiment was to evaluate the effect of nitrogen (N) management on five cultivars of winter wheat on yield and bread baking quality traits of modern and landrace SRW cultivars (Triticum aestivum L.). All five cultivars were evaluated using two N application rates in conventional and organic production systems. All traits measured were significantly affected by the agricultural production system and N rate, although plant height and other quality traits varied by study year. Significantly higher yields were achieved in the conventional system at a relatively low N rate (67.2 kg ha−1) in both study years (2017–2019) (p < 0.01). Results were variable by cultivar and a locally bred, high-yielding cultivar (Pembroke 2014) had the highest lactic acid solvent retention capacity score and thousand kernel weight of the cultivars evaluated. In addition, a landrace cultivar (Purple Straw) had the highest grain N and plant height. A French soft wheat, Soissons, had the highest sedimentation value and Pembroke 2016 achieved the highest yield. The findings from this study suggest the possibility of attaining a desirable grain with quality traits of SRW wheat that meets the needs of local bread wheat production in Kentucky through improving the optimization of cultivar selection, N management and specific considerations for conventional and organic systems. Full article
Show Figures

Figure 1

7 pages, 899 KB  
Study Protocol
Phenotyping Anther Extrusion of Wheat Using Image Analysis
by Zachary James Winn, Dylan Lee Larkin, Jamison Trey Murry, David Earl Moon and Richard Esten Mason
Agronomy 2021, 11(6), 1244; https://doi.org/10.3390/agronomy11061244 - 19 Jun 2021
Cited by 4 | Viewed by 3244
Abstract
Phenotyping wheat (Triticum aestivum L.) is time-consuming and new methods are necessary to decrease labor. To develop a heterotic pool of male wheat lines for hybrid breeding, there must be an efficient way to measure both anther extrusion and the size of [...] Read more.
Phenotyping wheat (Triticum aestivum L.) is time-consuming and new methods are necessary to decrease labor. To develop a heterotic pool of male wheat lines for hybrid breeding, there must be an efficient way to measure both anther extrusion and the size of anthers. Five hundred and ninety-four soft red winter wheat lines in two replications of randomized complete block design were phenotyped for anther extrusion, a key trait for hybrid wheat production. A device was constructed to capture images using a mobile device. Four heads were sampled per line when anthesis was evident for half the heads in the plot. The extruded anthers were scraped onto a surface, their image was captured, and the area of the anthers was taken via ImageJ. The number of anthers extruded was estimated by counting the number of anthers per image and dividing by the number of heads sampled. The area per anther was taken by dividing the area of anthers per spike by the number of anthers per spike. A significant correlation (R=0.9, p<0.0001) was observed between the area of anthers per spike and the number of anthers per spike. This method is proposed as a substitute for field ratings of anther extrusion and to quantitatively measure the size of anthers. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

20 pages, 1474 KB  
Article
A Comparison of Cereal and Cereal/Vetch Crops for Fodder Conservation
by John W. Piltz, Craig A. Rodham, John F. Wilkins and Belinda F. Hackney
Agriculture 2021, 11(5), 459; https://doi.org/10.3390/agriculture11050459 - 18 May 2021
Cited by 13 | Viewed by 4505
Abstract
Experiments were conducted at three sites across southern New South Wales, Australia, over three years (2008 to 2010), to evaluate the agronomic and quality parameters of two wheat (Triticum aestivum L.), two barley (Hordeum vulgare L.), two oat (Avena sativa [...] Read more.
Experiments were conducted at three sites across southern New South Wales, Australia, over three years (2008 to 2010), to evaluate the agronomic and quality parameters of two wheat (Triticum aestivum L.), two barley (Hordeum vulgare L.), two oat (Avena sativa L.) and one triticale (× Triticosecale) variety, grown as monocultures or in combination with purple vetch (Vicia benghalensis L.). Harvests occurred when individual cereal varieties were at the boot, anthesis, milk and soft/mid dough stage of maturity; though drought conditions or lodging forced some soft/mid dough stage harvests to be abandoned. Yield and species composition of mixed crops were measured and digestibility, crude protein, water soluble carbohydrates and fibre content were determined. Yield differed between years reflective of growing season rainfall, which varied from 185 to 479 mm. Drought conditions in 2008 were associated with low yield, vetch inclusion and fibre content and high digestibility, water soluble carbohydrates and cereal crude protein content. Conversely, very favourable conditions in 2010 were associated with high yield and fibre content, and lower digestibility, water soluble carbohydrates and cereal crude protein content. Addition of vetch increased crude protein content all crops in 2009 and 2010, and 50% of the crops in 2008. Lodging was observed in later harvests of cereal/vetch crops in 2009 and 2010. Full article
Show Figures

Figure 1

12 pages, 1660 KB  
Article
Physiological and Molecular Traits Associated with Nitrogen Uptake under Limited Nitrogen in Soft Red Winter Wheat
by Suman Lamichhane, Chiaki Murata, Carl A. Griffey, Wade E. Thomason and Takeshi Fukao
Plants 2021, 10(1), 165; https://doi.org/10.3390/plants10010165 - 17 Jan 2021
Cited by 10 | Viewed by 3881
Abstract
A sufficient nitrogen (N) supply is pivotal for high grain yield and desired grain protein content in wheat (Triticum aestivum L.). Elucidation of physiological and molecular mechanisms underlying nitrogen use efficiency (NUE) will enhance our ability to develop new N-saving varieties in [...] Read more.
A sufficient nitrogen (N) supply is pivotal for high grain yield and desired grain protein content in wheat (Triticum aestivum L.). Elucidation of physiological and molecular mechanisms underlying nitrogen use efficiency (NUE) will enhance our ability to develop new N-saving varieties in wheat. In this study, we analyzed two soft red winter wheat genotypes, VA08MAS-369 and VA07W-415, with contrasting NUE under limited N. Our previous study demonstrated that higher NUE in VA08MAS-369 resulted from accelerated senescence and N remobilization in flag leaves at low N. The present study revealed that VA08MAS-369 also exhibited higher nitrogen uptake efficiency (NUpE) than VA07W-415 under limited N. VA08MAS-369 consistently maintained root growth parameters such as maximum root depth, total root diameter, total root surface area, and total root volume under N limitation, relative to VA07W-415. Our time-course N content analysis indicated that VA08MAS-369 absorbed N more abundantly than VA07W-415 after the anthesis stage at low N. More efficient N uptake in VA08MAS-369 was associated with the increased expression of genes encoding a two-component high-affinity nitrate transport system, including four NRT2s and three NAR2s, in roots at low N. Altogether, these results demonstrate that VA08MAS-369 can absorb N efficiently even under limited N due to maintained root development and increased function of N uptake. The ability of VA08MAS-369 in N remobilization and uptake suggests that this genotype could be a valuable genetic material for the improvement of NUE in soft red winter wheat. Full article
Show Figures

Figure 1

25 pages, 3556 KB  
Article
Multi-Trait Genomic Prediction of Yield-Related Traits in US Soft Wheat under Variable Water Regimes
by Jia Guo, Jahangir Khan, Sumit Pradhan, Dipendra Shahi, Naeem Khan, Muhsin Avci, Jordan Mcbreen, Stephen Harrison, Gina Brown-Guedira, Joseph Paul Murphy, Jerry Johnson, Mohamed Mergoum, Richanrd Esten Mason, Amir M. H. Ibrahim, Russel Sutton, Carl Griffey and Md Ali Babar
Genes 2020, 11(11), 1270; https://doi.org/10.3390/genes11111270 - 28 Oct 2020
Cited by 36 | Viewed by 5526
Abstract
The performance of genomic prediction (GP) on genetically correlated traits can be improved through an interdependence multi-trait model under a multi-environment context. In this study, a panel of 237 soft facultative wheat (Triticum aestivum L.) lines was evaluated to compare single- and [...] Read more.
The performance of genomic prediction (GP) on genetically correlated traits can be improved through an interdependence multi-trait model under a multi-environment context. In this study, a panel of 237 soft facultative wheat (Triticum aestivum L.) lines was evaluated to compare single- and multi-trait models for predicting grain yield (GY), harvest index (HI), spike fertility (SF), and thousand grain weight (TGW). The panel was phenotyped in two locations and two years in Florida under drought and moderately drought stress conditions, while the genotyping was performed using 27,957 genotyping-by-sequencing (GBS) single nucleotide polymorphism (SNP) makers. Five predictive models including Multi-environment Genomic Best Linear Unbiased Predictor (MGBLUP), Bayesian Multi-trait Multi-environment (BMTME), Bayesian Multi-output Regressor Stacking (BMORS), Single-trait Multi-environment Deep Learning (SMDL), and Multi-trait Multi-environment Deep Learning (MMDL) were compared. Across environments, the multi-trait statistical model (BMTME) was superior to the multi-trait DL model for prediction accuracy in most scenarios, but the DL models were comparable to the statistical models for response to selection. The multi-trait model also showed 5 to 22% more genetic gain compared to the single-trait model across environment reflected by the response to selection. Overall, these results suggest that multi-trait genomic prediction can be an efficient strategy for economically important yield component related traits in soft wheat. Full article
(This article belongs to the Special Issue Genetic Improvement of Cereals and Grain Legumes)
Show Figures

Figure 1

12 pages, 257 KB  
Article
Breeding Wheat for Resilience to Increasing Nighttime Temperatures
by Kathleen Russell and David A. Van Sanford
Agronomy 2020, 10(4), 531; https://doi.org/10.3390/agronomy10040531 - 8 Apr 2020
Cited by 9 | Viewed by 3273
Abstract
Increases in global mean temperature since 1960 are largely attributed to the rise in minimum nighttime temperatures thereby decreasing diurnal temperature variation. Increased night temperatures are known to affect crop development. A multi-year study investigating the effects of increased night temperatures on soft [...] Read more.
Increases in global mean temperature since 1960 are largely attributed to the rise in minimum nighttime temperatures thereby decreasing diurnal temperature variation. Increased night temperatures are known to affect crop development. A multi-year study investigating the effects of increased night temperatures on soft red winter wheat (Triticum aestivum L.) varieties was conducted during the 2015-2016 growing seasons at the University of Kentucky Spindletop Research Farm in Lexington, KY. Thirty-six cultivars and breeding lines were chosen based on their genotypes at photoperiod and vernalization loci. This material was planted in a randomized complete block experiment with two replications and two environments, control and passively warmed. To create a passively warmed environment, thermal covers were mounted to frames in plots and connected to a datalogger programmed to cover plants from dusk to dawn based on coordinate location. Night temperature increases ranged from 0.27–0.75 °C above ambient temperature. Grain yield, averaged across genotypes, was significantly reduced in the passively warmed environment by 224 kg ha−1 (p ≤ 0.05) or 6.44%; however, yield response to environment varied among genotypes with several genotypes displaying an increased yield in the warmed environment. Yield reductions may reflect reduced nitrogen utilization (9.4%; p ≤ 0.001) under increased night temperatures. Full article
(This article belongs to the Special Issue Wheat Breeding: Procedures and Strategies)
15 pages, 803 KB  
Article
Rapid Estimation of Wheat Straw Decomposition Constituents Using Near-Infrared Spectroscopy
by Nathan S. Nielsen, Tami L. Stubbs, Kimberly A. Garland-Campbell and Arron H. Carter
Agronomy 2019, 9(8), 462; https://doi.org/10.3390/agronomy9080462 - 16 Aug 2019
Cited by 11 | Viewed by 4388
Abstract
Adoption of no-till systems in Eastern Washington has been slow due to the difficulty of managing wheat (Triticum aestivum L.) straw residue and the unknown decomposition potential of cultivars. We hypothesize that by analyzing wheat straw with near-infrared spectroscopy (NIRS), calibration models [...] Read more.
Adoption of no-till systems in Eastern Washington has been slow due to the difficulty of managing wheat (Triticum aestivum L.) straw residue and the unknown decomposition potential of cultivars. We hypothesize that by analyzing wheat straw with near-infrared spectroscopy (NIRS), calibration models can be developed to accurately predict fiber and chemical constituents of wheat, determining straw decomposition potential. Straw from a panel of 480 soft winter wheat cultivars adapted to the Pacific Northwest are analyzed for neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, carbon (C), and nitrogen (N). Using modified partial least squares regression and cross validation techniques, specific environment and broad-based NIRS models are calibrated and predictive ability is validated. R2cal values from broad models are better than the specific models, and are 0.85 (NDF), 0.86 (ADF), 0.65 (ADL), 0.88 (cellulose), 0.42 (hemicellulose), 0.67 (C), and 0.73 (N). The corresponding SEP values are 1.68% (NDF), 1.54% (ADF), 0.62% (ADL), 1.14% (cellulose), 1.11% (hemicellulose), 1.23% (C), and 0.06% (N). A Finch × Eltan breeding population is used to further validate models and prediction accuracies for variety selection within a breeding program scenario. The broad NIRS models prove useful for estimating high and low ranges of NDF, ADF, and cellulose in wheat cultivars which translate into characteristics of slow and fast decomposition potential. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

20 pages, 7347 KB  
Article
GWAS for Fusarium Head Blight Related Traits in Winter Wheat (Triticum Aestivum L.) in an Artificially Warmed Treatment
by Elisane W. Tessmann and David A. Van Sanford
Agronomy 2018, 8(5), 68; https://doi.org/10.3390/agronomy8050068 - 5 May 2018
Cited by 19 | Viewed by 6937
Abstract
Global temperature increases will affect Fusarium head blight (FHB) levels in wheat (Triticum aestivum L.). A pressing question is whether current sources of resistance will be effective in a warmer environment. We evaluated phenotypic response to disease in 238 soft winter wheat [...] Read more.
Global temperature increases will affect Fusarium head blight (FHB) levels in wheat (Triticum aestivum L.). A pressing question is whether current sources of resistance will be effective in a warmer environment. We evaluated phenotypic response to disease in 238 soft winter wheat breeding lines and cultivars grown in 2015–2016 and 2016–2017 under control and warmed (+3 °C) conditions. Warming was achieved with heating cables buried 3 cm in the rhizosphere. We measured heading date, plant height, yield, FHB rating, Fusarium damaged kernels (FDK), deoxynivalenol (DON), leaf blotch rating, powdery mildew rating and leaf rust rating. There were significant (p < 0.01) differences among genotypes for all traits measured. Genome-wide association study (GWAS) identified 19 and 10 significant SNPs in the control and warmed treatments, respectively. FDK and DON levels were often significantly (p < 0.05) higher in warmed than in control when we contrasted alleles at important quantitative trait locus (QTL) such as Fhb1, Rht-B1 and D1 and all vernalization and photoperiod loci. Increased rhizosphere temperature resulted in a significantly (p < 0.01) earlier heading date (~3.5 days) both years of the study. Rank correlation between warmed and control treatments was moderate (r = 0.56). Though encouraging, it indicates that selection for performance under warming should be carried out in a warmed environment. Full article
(This article belongs to the Special Issue Disease Resistance Trade-offs in Crop Breeding for Disease Resistance)
Show Figures

Figure 1

Back to TopTop