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Abstract: Phenotyping wheat (Triticum aestivum L.) is time-consuming and new methods are neces-
sary to decrease labor. To develop a heterotic pool of male wheat lines for hybrid breeding, there
must be an efficient way to measure both anther extrusion and the size of anthers. Five hundred and
ninety-four soft red winter wheat lines in two replications of randomized complete block design were
phenotyped for anther extrusion, a key trait for hybrid wheat production. A device was constructed
to capture images using a mobile device. Four heads were sampled per line when anthesis was
evident for half the heads in the plot. The extruded anthers were scraped onto a surface, their image
was captured, and the area of the anthers was taken via ImageJ. The number of anthers extruded
was estimated by counting the number of anthers per image and dividing by the number of heads
sampled. The area per anther was taken by dividing the area of anthers per spike by the number of
anthers per spike. A significant correlation (R = 0.9, p < 0.0001) was observed between the area of
anthers per spike and the number of anthers per spike. This method is proposed as a substitute for
field ratings of anther extrusion and to quantitatively measure the size of anthers.

Keywords: image analysis; anther extrusion; imaging methods

1. Introduction

Without substantial change in the developed world’s diet, current yield trends for
wheat (Triticum aestivum L.) are not on track to meet the projected caloric demands of
2050 [1,2]. Global grain yield must increase by approximately one petagram from the 2007
production benchmark if we are to meet the projected demands. However, the gain per
year has slowed to a near stagnant pace [1]. A proposed method for overcoming this deficit
is to take advantage of heterosis and convert wheat varieties from an inbred line breeding
system to an F1 hybrid breeding system [3–5].

There are several steps to developing a successful hybrid wheat cultivar. First, breeders
must separate lines into genetically distinct heterotic pools grouped by gender and genetic
distance [6]. Female wheat parents should be shorter than males, receptive to pollen, and
flower later. Male wheat parents should be taller than females, exhibit high anther extrusion,
produce large pollen-baring anthers, and flower earlier. To develop these heterotic pools,
breeders must select for these traits within these heterotic pools via reciprocal recurrent
selection [6,7].

Currently, a limiting factor in hybrid wheat production is the lack of male parents
exhibiting high anther extrusion. This is assumed to be a byproduct of selection for closed
flowering traits [4,7]. Measuring male anthesis traits can be laborious and time-consuming.
Although anther count measurements can be obtained within the field, this can only be
done on a limited number of accessions within the timeframe of anthesis [3,4].
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In the present study, 594 soft red winter wheat lines from the southeastern United
States were phenotyped via image analysis for the area of anthers extruded. We propose a
new method of analyzing the number of anthers extruded per spike (NOAPS) by using the
area of anthers extruded per spike (AOAPS) detected through image analysis as a bi-proxy
index. Through this medium-throughput analysis technique, we hope to remove biases
from visual ratings and find a new selection criterion for male hybrid parents.

2. Materials and Methods
2.1. Plant Materials

Portions of the materials and methods for this study were previously described by
Winn (2019) [8]. The Historic Gulf Atlantic Wheat Nursery (HGAWN) was planted in two
replications using a randomized complete block design in Fayetteville, Arkansas. The
HGAWN population was originally derived by Sarinelli et al. (2019) for genomic selection
and it consists of 594 RILs; of these RILs: 103 were produced by the University of Arkansas,
105 from the University of Georgia, 109 from Louisiana State University, 104 from North
Carolina State University, 60 from Texas A&M University, 41 from University of Florida,
44 from Virginia Institute of Technology, 19 from Clemson University, and 9 from private
industry or the United States Department of Agriculture-Agricultural Research Service
(USDA-ARS) [8,9].

Genotypes were planted in 1.2 m long single-row plots with 40 cm spacing between
neighboring plots. Soil sampling was performed and an application of 67 kg Ha−1 of urea
was done in late February, followed by another application of nitrogen at 33 kg Ha−1 in late
March. Harmony® Extra was applied at 0.28 kg Ha−1 in early February to control various
broadleaf weeds and Axial® was applied in early March at a rate of 0.6 kg Ha−1 to control
for annual ryegrass (Lolium multiflorum L.) weeds.

2.2. Phenotyping

Heading date (HD) data was collected when 50% of the plot was observed to be
heading from mid-April until all plots had headed out. Anthesis date (AD) was taken on
the day that anthesis was evident in half of the plot. Both HD and AD were recorded in
days from January 1st. Heads used for anther imaging were sampled at AD.

To obtain the AOAPS four heads were collected per genotype at AD. Collected heads
were placed into glassine envelopes and stored at 4◦ C; all samples were imaged no later
than 48 h after sampling. Extruded anthers were gently swept off heads by hand onto a
red surface and then imaged. NOAPS was estimated by counting the number of anthers
in each image and dividing by the total number of spikes available. The area per anther
(APA) was calculated by taking the total AOAPS and dividing by the NOAPS [8].

2.3. Imaging

An image capturing device was constructed for the imaging of anthers. The goal of
this imaging device was to capture images at a specified height with consistent resolution
and lighting at a minimal cost (Figure 1).

To construct the mobile imaging device, a 4.5 cm wide hole was drilled in the center
of a 4.7 L Little Giant® feed pan (Miller Manufacturing Company; Eagan, MN, USA) to
accommodate the lens of the camera. RUST-OLEUM® Camouflage Ultra Flat Black (Rust-
Oleum USA; Vernon Hills, IL, USA) spray paint was applied to the interior of the feed
pan to create a non-reflective matte surface. A handle was attached just above the camera
opening to prevent the mobile device from changing position during imaging. The hook
portion of a 15.25 cm length of hook-and-loop fastener was attached approximately 6 cm
from the 4.5 cm opening to prevent the movement of the mobile device during imaging
and provide a consistent shot.
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Figure 1. The imaging device used for image capture (A) original image, (B) area of detected anthers,
and (C) an overlay of the two images.

A section of tape lights from a GoodEarth® Self-Adhesive Tape Lighting Kit (Good
Earth Lighting; Mount Prospect, IL, USA) measuring approximately 63.5 cm was fixed to
the interior of the pan. An imaging stage measuring 132 cm by 23 cm was painted with
Classic Red Valspar Ultra® Interior Flat Paint (Valspar; Cleveland, OH, USA) until the paint
was completely opaque and the texture of the board was no longer visible. Images were
taken on a Samsung® S9+ (Samsung; Seoul, South Korea) phone with the following camera
specifications: a 12-mega pixel camera, with a focal length of 4 mm, a F-stop of f/1.5, a
shutter speed of 1/125 s, at an ISO of 50, and a white balance between 2000–3000 Kelvin [8].

2.4. Image Analysis

Images were analyzed via java script in ImageJ software version 1.5 [10]. A macro
was composed for image analysis. The macro contained the following procedures: setting
a scale of pixels to a known distance, adjusting the brightness and contrast, applying a
gaussian blur, selecting a specific color threshold, and analyzing the selected particles in
the image.

A reference image with a ruler was taken, and the ImageJ line function was then used
to set 320 pixels to 10 mm2. The brightness and contrast minimum and maximum were set
to 130 and 255, respectively. A gaussian blur of σ = 2 was applied. A color threshold was
then selected using the hue, saturation, and brightness settings.

Hue was set to a minimum of 1 and a maximum of 255, saturation was set to a
minimum of 0 and a maximum of 255, and brightness was set to a minimum of 142 and a
maximum of 255. Selected particles were then analyzed and holes between selected pixels
were included. The area of selected pixels was reported in mm2 [8].

2.5. Statistical Models and Software

All models were done in R statistical software version 4.0.3 using the package “asreml”
version 4 [11,12]. All graphics and visuals were generated using the packages “ggplot2”,
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“plotly”, and “GGally” [13,14]. A series of mixed linear models (MLM) were employed to
analyze HD, AD, AOAPS, NOAPS, and APA. The formula used is as follows:

yij = µ + Gi + Rj + εij

where y is the response variable, µ is the population mean, G is the fixed genotype ef-
fect, R is the random effect of replication

(
R ∼ N

(
0, Iσ2

R
))

, and ε is the residual error
( ε ∼ N(0, Iσ2

ε )). Repeatability was estimated by dividing the variance of the genotype
effect by the total phenotypic variance. The best linear unbiased estimates (BLUEs) of the
fixed genotype effect were obtained through the function “asreml.predict()” in the package
“asreml” for later use in correlation and regression studies. A principal component analysis
(PCA) was performed on the eigen value decomposed correlation matrix derived from the
BLUEs using the base function “prcomp()” from the “Stats” package in R in order to assess
if there was any discernable pattern of clustering between variables.

3. Results

Of the total possible observations planted, 835 were collected and BLUEs for all traits
were obtained for 491 of the total 593 RIL lines of the HGAWN. All response variables in
the MLM were significant for the genotype effect (p < 0.05) and estimates of the genotype
variance for each trait were obtained to estimate repeatability and the standard error of
those repeatability estimates (Table 1).

Table 1. Listed summary statistics derived from mixed linear models. p-values are derived from a chi-squared distribution.
A p-value of 0.05 or less is considered significant.

Trait Degrees of
Freedom

Sum of
Squares Wald Statistic p-Value R * Standard Error **

Heading Date 580 1761.10 1194.58 <0.0001 0.28 0.08
Anthesis Date 492 928.24 777.87 <0.0001 0.24 0.06

Area of Anthers per Spike 494 15,322.21 636.92 <0.0001 0.17 0.27
Number of Anthers per Spike 492 58,067.08 607.61 0.0003 0.17 0.89

Area per Anther 491 7.47 1299.32 <0.0001 0.49 0.04

* = Repeatability. ** = Standard error in reference to repeatability.

The best linear unbiased estimates obtained from the fixed mixed linear models were
used to perform a correlational analysis (Figure 2). A highly significant correlation (R = 0.9,
p < 0.0001) was found between the AOAPS and NOAPS. No significant correlation was
found between the NOAPS and APA. However, a modest positive correlation (R = 0.47,
p < 0.0001) was found between AOAPS and APA. Significant correlation coefficients were
seen between HD, AD, AOAPS, NOAPS, and APA. To assess the relationship between the
phenotypic measurements obtained, a PCA was conducted on the correlation matrix of
BLUEs to observe any discernable pattern. The first, second and third principal components
accounted for 46.5%, 32.4%, and 16.1% of the total variation, respectively. When the first
three principal components were plotted, HD and AD grouped together, while NOAPS
and AOAPS grouped together, and APA was alone, which may indicate that the AD and
HD do not interact with NOAPS and AOAPS (Figure 3).
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4. Discussion

Hybrid breeding may be a possible method for increasing wheat yields, and further
study is required. The production of male wheat breeding lines exhibiting high levels
of anther extrusion is a crucial step that must be taken to begin effective hybrid wheat
breeding. While anther extrusion in biparental populations is estimated to have a high
heritability [15], obtaining ratings for anther extrusion can be time consuming and visual
rating is confounded by human bias. The present study’s objective was to provide an
alternative phenotyping method that lowered the influence of bias for the evaluation of
male anther extrusion in wheat.

In this study, the NOAPS, AOAPS, and APA were significant relative to the genotype,
and the NOAPS and AOAPS showed a strong relationship. This suggests that this method
may be sufficient to serve as a substitute for physically counting anthers. The repeatability
of NOAPS and AOAPS were highly similar, yet the standard error of the repeatability for
NOAPS was far higher than AOAPS. This indicates that while both methods have a large
standard error in terms of repeatability due to the limited replications in this study, AOAPS
appears to have a significantly lower standard error, implying that its repeatability over
many site-years may be higher than NOAPS.

In reference to the high standard error of AOAPS’s repeatability: the sampling that
was applied to image the extruded anthers onto the sampling area may have deformed
the anthers due to the sweeping of anthers off the wheat head. Perhaps the AOAPS’s
repeatability could be improved using a gentler method of anther removal.

The APA was significant for the genotype effect and had both the highest repeatability
and the lowest standard error for repeatability. The area of anthers has had limited
study. However, the broad-sense heritability of anther size is estimated to be relatively
high [16]. Regardless, the methods used to measure this trait are highly laborious and time
consuming.

Furthermore, we did not detect a significant correlation between the APA and the
NOAPS. This may indicate that in this population, the number of anthers and size of
anthers are not correlated. Wheat anthers size has been positively correlated to the number
of pollen granules in wheat, and the length of wheat anthers has been shown to be variable
in separate populations [17]. However, there is a lack of studies relating the size and
number of anthers on singular heads.

We did not have a direct comparison in this study to detect if the APA is highly
correlated with the anther size. However, this represents a route of future study for this
type of image analysis. Perhaps the use of machine learning to determine the number of
anthers in the image could reduce the time to count anthers and produce an approximation
of the APA without the need for physically counting the number of anthers in each picture.
Further replications, applications, and studies are therefore required to validate this system
for the use of measuring APA.

5. Conclusions

Phenotyping wheat is time consuming and new methods are needed. Anther extrusion
is an important trait for male line development in hybrid wheat breeding. In the current
study, we have demonstrated a new method of measuring the number of anthers extruded,
which can quantify the size of anthers and may act as a possible substitute for the physical
counting of anthers.
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Abbreviations

NOAPS Number of Anthers Extruded Per Spike
AOAPS Area of Anthers Extruded Per Spike
APA Area per Anther
HD Heading Date
AD Anthesis Date
HGAWN Historic Gulf Atlantic Nursery
BLUEs Best Linear Unbiased Estimates
PCA Principal Component Analysis
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