Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = sodium voltage-operated channels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1538 KB  
Review
H+ and Confined Water in Gating in Many Voltage-Gated Potassium Channels: Ion/Water/Counterion/Protein Networks and Protons Added to Gate the Channel
by Alisher M. Kariev and Michael E. Green
Int. J. Mol. Sci. 2025, 26(15), 7325; https://doi.org/10.3390/ijms26157325 - 29 Jul 2025
Viewed by 1235
Abstract
The mechanism by which voltage-gated ion channels open and close has been the subject of intensive investigation for decades. For a large class of potassium channels and related sodium channels, the consensus has been that the gating current preceding the main ionic current [...] Read more.
The mechanism by which voltage-gated ion channels open and close has been the subject of intensive investigation for decades. For a large class of potassium channels and related sodium channels, the consensus has been that the gating current preceding the main ionic current is a large movement of positively charged segments of protein from voltage-sensing domains that are mechanically connected to the gate through linker sections of the protein, thus opening and closing the gate. We have pointed out that this mechanism is based on evidence that has alternate interpretations in which protons move. Very little literature considers the role of water and protons in gating, although water must be present, and there is evidence that protons can move in related channels. It is known that water has properties in confined spaces and at the surface of proteins different from those in bulk water. In addition, there is the possibility of quantum properties that are associated with mobile protons and the hydrogen bonds that must be present in the pore; these are likely to be of major importance in gating. In this review, we consider the evidence that indicates a central role for water and the mobility of protons, as well as alternate ways to interpret the evidence of the standard model in which a segment of protein moves. We discuss evidence that includes the importance of quantum effects and hydrogen bonding in confined spaces. K+ must be partially dehydrated as it passes the gate, and a possible mechanism for this is considered; added protons could prevent this mechanism from operating, thus closing the channel. The implications of certain mutations have been unclear, and we offer consistent interpretations for some that are of particular interest. Evidence for proton transport in response to voltage change includes a similarity in sequence to the Hv1 channel; this appears to be conserved in a number of K+ channels. We also consider evidence for a switch in -OH side chain orientation in certain key serines and threonines. Full article
Show Figures

Graphical abstract

26 pages, 1956 KB  
Review
Ion Channel and Transporter Involvement in Chemotherapy-Induced Peripheral Neurotoxicity
by Eleonora Pozzi, Giulia Terribile, Laura Cherchi, Sara Di Girolamo, Giulio Sancini and Paola Alberti
Int. J. Mol. Sci. 2024, 25(12), 6552; https://doi.org/10.3390/ijms25126552 - 14 Jun 2024
Cited by 7 | Viewed by 3686
Abstract
The peripheral nervous system can encounter alterations due to exposure to some of the most commonly used anticancer drugs (platinum drugs, taxanes, vinca alkaloids, proteasome inhibitors, thalidomide), the so-called chemotherapy-induced peripheral neurotoxicity (CIPN). CIPN can be long-lasting or even permanent, and it is [...] Read more.
The peripheral nervous system can encounter alterations due to exposure to some of the most commonly used anticancer drugs (platinum drugs, taxanes, vinca alkaloids, proteasome inhibitors, thalidomide), the so-called chemotherapy-induced peripheral neurotoxicity (CIPN). CIPN can be long-lasting or even permanent, and it is detrimental for the quality of life of cancer survivors, being associated with persistent disturbances such as sensory loss and neuropathic pain at limb extremities due to a mostly sensory axonal polyneuropathy/neuronopathy. In the state of the art, there is no efficacious preventive/curative treatment for this condition. Among the reasons for this unmet clinical and scientific need, there is an uncomplete knowledge of the pathogenetic mechanisms. Ion channels and transporters are pivotal elements in both the central and peripheral nervous system, and there is a growing body of literature suggesting that they might play a role in CIPN development. In this review, we first describe the biophysical properties of these targets and then report existing data for the involvement of ion channels and transporters in CIPN, thus paving the way for new approaches/druggable targets to cure and/or prevent CIPN. Full article
(This article belongs to the Special Issue Mechanisms of Neurotoxicity)
Show Figures

Figure 1

24 pages, 3542 KB  
Article
Pregabalin–Tolperisone Combination to Treat Neuropathic Pain: Improved Analgesia and Reduced Side Effects in Rats
by Nariman Essmat, Anna Rita Galambos, Péter P. Lakatos, Dávid Árpád Karádi, Amir Mohammadzadeh, Sarah Kadhim Abbood, Orsolya Geda, Rudolf Laufer, Kornél Király, Pál Riba, Zoltán S. Zádori, Éva Szökő, Tamás Tábi and Mahmoud Al-Khrasani
Pharmaceuticals 2023, 16(8), 1115; https://doi.org/10.3390/ph16081115 - 7 Aug 2023
Cited by 10 | Viewed by 7219
Abstract
The current treatment of neuropathic pain (NP) is unsatisfactory; therefore, effective novel agents or combination-based analgesic therapies are needed. Herein, oral tolperisone, pregabalin, and duloxetine were tested for their antinociceptive effect against rat partial sciatic nerve ligation (pSNL)-induced tactile allodynia described by a [...] Read more.
The current treatment of neuropathic pain (NP) is unsatisfactory; therefore, effective novel agents or combination-based analgesic therapies are needed. Herein, oral tolperisone, pregabalin, and duloxetine were tested for their antinociceptive effect against rat partial sciatic nerve ligation (pSNL)-induced tactile allodynia described by a decrease in the paw withdrawal threshold (PWT) measured by a dynamic plantar aesthesiometer. On day 7 after the operation, PWTs were assessed at 60, 120, and 180 min post-treatment. Chronic treatment was continued for 2 weeks, and again, PWTs were measured on day 14 and 21. None of the test compounds produced an acute antiallodynic effect. In contrast, after chronic treatment, tolperisone and pregabalin alleviated allodynia. In other experiments, on day 14, the acute antiallodynic effect of the tolperisone/pregabalin or duloxetine combination was measured. As a novel finding, a single dose of the tolperisone/pregabalin combination could remarkably alleviate allodynia acutely. It also restored the neuropathy-induced elevated CSF glutamate content. Furthermore, the combination is devoid of adverse effects related to motor and gastrointestinal transit functions. Tolperisone and pregabalin target voltage-gated sodium and calcium channels, respectively. The dual blockade effect of the combination might explain its advantageous acute analgesic effect in the present work. Full article
(This article belongs to the Special Issue Pharmacotherapy of Neuropathic Pain)
Show Figures

Figure 1

17 pages, 4694 KB  
Article
Electrolytes with Micelle-Assisted Formation of Directional Ion Transport Channels for Aqueous Rechargeable Batteries with Impressive Performance
by Yanmin Lu, Fengxiang Zhang, Xifeng Lu, Haihui Jiang, Wei Hu, Libin Liu and Ligang Gai
Nanomaterials 2022, 12(11), 1920; https://doi.org/10.3390/nano12111920 - 4 Jun 2022
Cited by 6 | Viewed by 3808
Abstract
Low-cost and ecofriendly electrolytes with suppressed water reactivity and raised ionic conductivity are desirable for aqueous rechargeable batteries because it is a dilemma to decrease the water reactivity and increase the ionic conductivity at the same time. In this paper, Li2SO [...] Read more.
Low-cost and ecofriendly electrolytes with suppressed water reactivity and raised ionic conductivity are desirable for aqueous rechargeable batteries because it is a dilemma to decrease the water reactivity and increase the ionic conductivity at the same time. In this paper, Li2SO4–Na2SO4–sodium dodecyl sulfate (LN-SDS)-based aqueous electrolytes are designed, where: (i) Na+ ions dissociated from SDS increase the charge carrier concentration, (ii) DS/SO42− anions and Li+/Na+ cations are capable of trapping water molecules through hydrogen bonding and/or hydration, resulting in a lowered melting point, (iii) Li+ ions reduce the Krafft temperature of LN-SDS, (iv) Na+ and SO42− ions increase the low-temperature electrolyte ionic conductivity, and (v) SDS micelle clusters are orderly aggregated to form directional ion transport channels, enabling the formation of quasi-continuous ion flows without (r.t.) and with (≤0 °C) applying voltage. The screened LN-SDS is featured with suppressed water reactivity and high ionic conductivity at temperatures ranging from room temperature to −15 °C. Additionally, NaTi2(PO4)3‖LiMn2O4 batteries operating with LN-SDS manifest impressive electrochemical performance at both room temperature and −15 °C, especially the cycling stability and low-temperature performance. Full article
Show Figures

Graphical abstract

13 pages, 2171 KB  
Article
Chemiluminescent Receptor Binding Assay for Ciguatoxins and Brevetoxins Using Acridinium Brevetoxin-B2
by Kazuya Murata and Takeshi Yasumoto
Toxins 2019, 11(10), 580; https://doi.org/10.3390/toxins11100580 - 9 Oct 2019
Cited by 8 | Viewed by 3903
Abstract
Ciguatera is the term for poisoning resulting from eating fish from tropical or subtropical regions. The causative toxins collectively named ciguatoxins (CTXs) widely differ in structures depending on their geographic origins, which range from the Pacific Ocean and the Indian Ocean to the [...] Read more.
Ciguatera is the term for poisoning resulting from eating fish from tropical or subtropical regions. The causative toxins collectively named ciguatoxins (CTXs) widely differ in structures depending on their geographic origins, which range from the Pacific Ocean and the Indian Ocean to the Caribbean Sea. Neurotoxic shellfish poisoning (NSP) is caused by the ingestion of bivalve shellfish contaminated with brevetoxins (BTXs). Structurally, both CTXs and BTXs consist of fused ether rings aligned in a ladder shape. Pharmacologically, they bind at the same site (site-5) of voltage-gated sodium channels. However, the great structural diversity and the rare availability of reference toxins hinder LC-MS and ELISA methods, which operate on structure-based recognition. In this study, we prepared a chemiluminescent ligand, acridinium BTXB2 (ABTX), and tested its suitability for use in competitive binding assays to detect CTXs and BTXs. The affinity of ABTX to the rat brain synaptosome estimated by Ki (1.66 pM) was approximately two-fold higher than that of PbTx-3 (BTX3). In addition, the equilibrium dissociation constant (KD) was 0.84 nM, the maximum number of binding was 6.76 pmol toxin/mg protein, and the detection limit was 1.4 amol. The assays performed on samples spiked with CTX3C or BTXB4 (N-palmitoylBTXB2) at 0.2–1.0 ng CTX/g fish flesh, and 200–800 ng BTXB4/g shellfish showed a linear relationship between the theoretical and observed toxin amounts. Full article
(This article belongs to the Special Issue Marine Toxins Detection)
Show Figures

Graphical abstract

18 pages, 290 KB  
Review
Noncanonical Ion Channel Behaviour in Pain
by Cosmin I. Ciotu, Christoforos Tsantoulas, Jannis Meents, Angelika Lampert, Stephen B. McMahon, Andreas Ludwig and Michael J.M. Fischer
Int. J. Mol. Sci. 2019, 20(18), 4572; https://doi.org/10.3390/ijms20184572 - 15 Sep 2019
Cited by 9 | Viewed by 5659
Abstract
Ion channels contribute fundamental properties to cell membranes. Although highly diverse in conductivity, structure, location, and function, many of them can be regulated by common mechanisms, such as voltage or (de-)phosphorylation. Primarily considering ion channels involved in the nociceptive system, this review covers [...] Read more.
Ion channels contribute fundamental properties to cell membranes. Although highly diverse in conductivity, structure, location, and function, many of them can be regulated by common mechanisms, such as voltage or (de-)phosphorylation. Primarily considering ion channels involved in the nociceptive system, this review covers more novel and less known features. Accordingly, we outline noncanonical operation of voltage-gated sodium, potassium, transient receptor potential (TRP), and hyperpolarization-activated cyclic nucleotide (HCN)-gated channels. Noncanonical features discussed include properties as a memory for prior voltage and chemical exposure, alternative ion conduction pathways, cluster formation, and silent subunits. Complementary to this main focus, the intention is also to transfer knowledge between fields, which become inevitably more separate due to their size. Full article
(This article belongs to the Special Issue Ion Channels of Nociception)
Back to TopTop