Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = small supernumerary marker chromosomes (sSMC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2740 KiB  
Article
Supernumerary Marker Chromosome Identified in Asian Elephant (Elephas maximus)
by Halina Cernohorska, Svatava Kubickova, Petra Musilova, Miluse Vozdova, Roman Vodicka and Jiri Rubes
Animals 2023, 13(4), 701; https://doi.org/10.3390/ani13040701 - 17 Feb 2023
Cited by 1 | Viewed by 3107
Abstract
We identified a small, supernumerary marker chromosome (sSMC) in two phenotypically normal Asian elephants (Elephas maximus): a female (2n = 57,XX,+mar) and her male offspring (2n = 57,XY,+mar). sSMCs are defined as structurally abnormal chromosomes that cannot be identified by conventional [...] Read more.
We identified a small, supernumerary marker chromosome (sSMC) in two phenotypically normal Asian elephants (Elephas maximus): a female (2n = 57,XX,+mar) and her male offspring (2n = 57,XY,+mar). sSMCs are defined as structurally abnormal chromosomes that cannot be identified by conventional banding analysis since they are usually small and often lack distinct banding patterns. Although current molecular techniques can reveal their origin, the mechanism of their formation is not yet fully understood. We determined the origin of the marker using a suite of conventional and molecular cytogenetic approaches that included (a) G- and C-banding, (b) AgNOR staining, (c) preparation of a DNA clone using laser microdissection of the marker chromosome, (d) FISH with commercially available human painting and telomeric probes, and (e) FISH with centromeric DNA derived from the centromeric regions of a marker-free Asian elephant. Moreover, we present new information on the location and number of NORs in Asian and savanna elephants. We show that the metacentric marker was composed of heterochromatin with NORs at the terminal ends, originating most likely from the heterochromatic region of chromosome 27. In this context, we discuss the possible mechanism of marker formation. We also discuss the similarities between sSMCs and B chromosomes and whether the marker chromosome presented here could evolve into a B chromosome in the future. Full article
Show Figures

Figure 1

13 pages, 2424 KiB  
Case Report
De Novo Mosaic 6p23-p25.3 Tetrasomy Caused by a Small Supernumerary Marker Chromosome Presenting Trisomy Distal 6p Phenotype: A Case Report and Literature Review
by Yu-Min Syu, Juine-Yih Ma, Tzu-Hsuen Ou, Chung-Lin Lee, Hsiang-Yu Lin, Shuan-Pei Lin, Chia-Jung Lee and Chih-Ping Chen
Diagnostics 2022, 12(10), 2306; https://doi.org/10.3390/diagnostics12102306 - 24 Sep 2022
Cited by 1 | Viewed by 4304
Abstract
Small supernumerary marker chromosomes (sSMCs) derived from the chromosome 6 short arm are rare and their clinical significance remains unknown. No case with sSMC(6) without centromeric DNA has been reported. Partial trisomy and tetrasomy of distal 6p is a rare but clinically distinct [...] Read more.
Small supernumerary marker chromosomes (sSMCs) derived from the chromosome 6 short arm are rare and their clinical significance remains unknown. No case with sSMC(6) without centromeric DNA has been reported. Partial trisomy and tetrasomy of distal 6p is a rare but clinically distinct syndrome. We report on a de novo mosaic sSMC causing partial tetrasomy for 6p23-p25.3 in a male infant with symptoms of being small for gestational age, microcephaly, facial dysmorphism, congenital eye defects, and multi-system malformation. Conventional cytogenetic analysis revealed a karyotype of 47,XY,+mar [25]/46,XY [22]. Array comparative genomic hybridization (aCGH) revealed mosaic tetrasomy of distal 6p. This is the first case of mosaic tetrasomy 6p23-p25.3 caused by an inverted duplicated neocentric sSMC with characteristic features of trisomy distal 6p. Comparison of phenotypes in cases with trisomy and tetrasomy of 6p23-p25.3 could facilitate a genotype–phenotype correlation and identification of candidate genes contributing to their presentation. The presentation of anterior segment dysgenesis and anomaly of the renal system suggest triplosensitivity of the FOXC1 gene. In patients with microcephaly growth retardation, and malformation of the cardiac and renal systems, presentation of anterior segment dysgenesis might be indicative of chromosome 6p duplication, and aCGH evaluation should be performed for associated syndromic disease. Full article
(This article belongs to the Special Issue Genetic Diagnosis of Pediatric Diseases)
Show Figures

Figure 1

10 pages, 17376 KiB  
Case Report
The First Neocentric, Discontinuous, and Complex Small Supernumerary Marker Chromosome Composed of 7 Euchromatic Blocks Derived from 5 Different Chromosomes
by André Weber, Thomas Liehr, Ahmed Al-Rikabi, Simal Bilgen, Uwe Heinrich, Jenny Schiller and Markus Stumm
Biomedicines 2022, 10(5), 1102; https://doi.org/10.3390/biomedicines10051102 - 10 May 2022
Cited by 6 | Viewed by 2917
Abstract
Background: The majority of small supernumerary marker chromosomes (sSMCs) are derived from one single chromosome. Complex sSMCs instead consist of two to three genomic segments, originating from different chromosomes. Additionally, discontinuous sSMCs have been seen; however, all of them are derived from one [...] Read more.
Background: The majority of small supernumerary marker chromosomes (sSMCs) are derived from one single chromosome. Complex sSMCs instead consist of two to three genomic segments, originating from different chromosomes. Additionally, discontinuous sSMCs have been seen; however, all of them are derived from one single chromosome. Here, we reported a 41 year-old patient with infertility, hypothyroidism, rheumatism, and degenerative spine and schizoaffective disorder, being a carrier of a unique, complex, and discontinuous sSMC. Methods: The sSMC was characterized in detail by banding and molecular cytogenetics including fluorescence in situ hybridization (FISH) and array-comparative genomic hybridization (aCGH), as well as by optical genome mapping (OGM). Results: The neocentric sSMC characterized here contained seven portions of five different chromosomes and was present in ~50% of both peripheral blood cells and buccal mucosa cells. aCGH and OGM revealed gains of 8q12.3q12.3, 8q22.3–8q23.1, 9q33.3–9q34.11, 14q21.1–14q21.1, 14q21.1–14q21.2, 15q21.2–15q21.2, and 21q21.1–21q21.1. Furthermore, glass-needle based microdissection and reverse FISH, as well as FISH with locus-specific probes confirmed these results. The exact order of the involved euchromatic blocks could be decoded by OGM. Conclusions: Among the >7000 reported sSMCs in the literature, this is the only such complex, discontinuous, and neocentric marker with a centric minute shape. Full article
(This article belongs to the Special Issue Advances in Molecular Cytogenetics)
Show Figures

Figure 1

19 pages, 9387 KiB  
Article
Prenatal Diagnosis of Small Supernumerary Marker Chromosome 10 by Array-Based Comparative Genomic Hybridization and Microdissected Chromosome Sequencing
by Igor N. Lebedev, Tatyana V. Karamysheva, Eugeny A. Elisaphenko, Alexey I. Makunin, Daria I. Zhigalina, Maria E. Lopatkina, Gleb V. Drozdov, Aleksander D. Cheremnykh, Natalia B. Torkhova, Gulnara N. Seitova, Stanislav A. Vasilyev, Anna A. Kashevarova, Ludmila P. Nazarenko and Nikolay B. Rubtsov
Biomedicines 2021, 9(8), 1030; https://doi.org/10.3390/biomedicines9081030 - 17 Aug 2021
Cited by 8 | Viewed by 3606
Abstract
Interpreting the clinical significance of small supernumerary marker chromosomes (sSMCs) in prenatal diagnosis is still an urgent problem in genetic counselling regarding the fate of a pregnancy. We present a case of prenatal diagnosis of mosaic sSMC(10) in a foetus with a normal [...] Read more.
Interpreting the clinical significance of small supernumerary marker chromosomes (sSMCs) in prenatal diagnosis is still an urgent problem in genetic counselling regarding the fate of a pregnancy. We present a case of prenatal diagnosis of mosaic sSMC(10) in a foetus with a normal phenotype. Comprehensive cytogenomic analyses by array-based comparative genomic hybridization (aCGH), sSMC microdissection with next-generation sequencing (NGS) of microdissected library, fluorescence in situ hybridization (FISH) with locus-specific and telomere-specific DNA probes and quantitative real-time PCR revealed that sSMC(10) had a ring structure and was derived from the pericentromeric region of chromosome 10 with involvement of the 10p11.21-p11.1 and 10q11.21-q11.23 at 1.243 Mb and 7.173 Mb in size, respectively. We observed a difference in the length of sSMC(10) between NGS data of the DNA library derived from a single copy of sSMC(10), and aCGH results that may indicate instability and structural mosaicism for ring chromosomes in foetal cells. The presence of a 9 Mb euchromatin region in the analysed sSMC(10) did not lead to clinical manifestations, and a healthy girl was born at term. We suggest that the ring structure of sSMCs could influence sSMC manifestations and should be taken into account in genetic counselling during prenatal diagnosis. Full article
(This article belongs to the Special Issue Advances in Molecular Cytogenetics)
Show Figures

Figure 1

8 pages, 1936 KiB  
Case Report
Prenatal Diagnosis of True Fetal Mosaicism with Small Supernumerary Marker Chromosome Derived from Chromosome 16 by Funipuncture and Molecular Cytogenetics Including Chromosome Microarray
by Tien-Yu Yao, Wan-Ju Wu, Kim-Seng Law, Mei-Hui Lee, Shun-Ping Chang, Dong-Jay Lee, Wen-Hsiang Lin, Ming Chen and Gwo-Chin Ma
Diagnostics 2021, 11(8), 1457; https://doi.org/10.3390/diagnostics11081457 - 12 Aug 2021
Viewed by 3769
Abstract
This study examined the molecular characterization of a prenatal case with true fetal mosaicism of small supernumerary marker chromosome 16 (sSMC(16)). A 41-year-old female underwent amniocentesis at 19 weeks of gestation due to advanced maternal age. Chromosomal analysis for cultured amniocytes revealed a [...] Read more.
This study examined the molecular characterization of a prenatal case with true fetal mosaicism of small supernumerary marker chromosome 16 (sSMC(16)). A 41-year-old female underwent amniocentesis at 19 weeks of gestation due to advanced maternal age. Chromosomal analysis for cultured amniocytes revealed a karyotype of 47,XY,+mar[4]/46,XY[16]. Spectral karyotyping and metaphase fluorescence in situ hybridization (FISH) demonstrated that the sSMC was derived from chromosome 16 (47,XY,+mar.ish der(16)(D16Z1+)[13/20]). Confined placental mosaicism was initially suspected because the prenatal ultrasound revealed a normal structure and the pregnancy was uneventful. However, interphase FISH of cord blood performed at 28 weeks of gestation showed 20% mosaicism of trisomy chromosome 16 (nuc ish(D16Z2×3)[40/200]). Chromosome microarray analysis further demonstrated 55% mosaicism of an 8.02 Mb segmental duplication at the subcentromeric region of 16p12.1p11.1 (arr[GRCh37] 16p12.1p11.1(27021975_35045499)×3[0.55]). The results demonstrated a true fetal mosaicism of sSMC(16) involving chromosome16p12.1p11.1 that is associated with chromosome 16p11.2 duplication syndrome (OMIM #614671). After non-directive genetic counseling, the couple opted for late termination of pregnancy. This case illustrated the use of multiple molecular cytogenetic tools to elucidate the origin and structure of sSMC, which is crucial for prenatal counseling, decision making, and clinical management. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

19 pages, 4141 KiB  
Article
Two Separate Cases: Complex Chromosomal Abnormality Involving Three Chromosomes and Small Supernumerary Marker Chromosome in Patients with Impaired Reproductive Function
by Tatyana V. Karamysheva, Tatyana A. Gayner, Vladimir V. Muzyka, Konstantin E. Orishchenko and Nikolay B. Rubtsov
Genes 2020, 11(12), 1511; https://doi.org/10.3390/genes11121511 - 17 Dec 2020
Cited by 3 | Viewed by 3836
Abstract
For medical genetic counseling, estimating the chance of a child being born with chromosome abnormality is crucially important. Cytogenetic diagnostics of parents with a balanced karyotype are a special case. Such chromosome rearrangements cannot be detected with comprehensive chromosome screening. In the current [...] Read more.
For medical genetic counseling, estimating the chance of a child being born with chromosome abnormality is crucially important. Cytogenetic diagnostics of parents with a balanced karyotype are a special case. Such chromosome rearrangements cannot be detected with comprehensive chromosome screening. In the current paper, we consider chromosome diagnostics in two cases of chromosome rearrangement in patients with balanced karyotype and provide the results of a detailed analysis of complex chromosomal rearrangement (CCR) involving three chromosomes and a small supernumerary marker chromosome (sSMC) in a patient with impaired reproductive function. The application of fluorescent in situ hybridization, microdissection, and multicolor banding allows for describing analyzed karyotypes in detail. In the case of a CCR, such as the one described here, the probability of gamete formation with a karyotype, showing a balance of chromosome regions, is extremely low. Recommendation for the family in genetic counseling should take into account the obtained result. In the case of an sSMC, it is critically important to identify the original chromosome from which the sSMC has been derived, even if the euchromatin material is absent. Finally, we present our view on the optimal strategy of identifying and describing sSMCs, namely the production of a microdissectional DNA probe from the sSMC combined with a consequent reverse painting. Full article
(This article belongs to the Special Issue Chromosome-Centric View of the Genome Organization and Evolution)
Show Figures

Graphical abstract

Back to TopTop