Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = singlet excitons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1591 KiB  
Article
Synergistic Control of Liquid Crystallinity and Phosphorescence in Gold(I) Complexes via Strategic Alkyl Chain Design
by Arushi Rawat, Kohsuke Matsumoto, Ganesan Prabusankar and Osamu Tsutsumi
Crystals 2025, 15(6), 554; https://doi.org/10.3390/cryst15060554 - 10 Jun 2025
Viewed by 1217
Abstract
Liquid crystals exhibit unique properties that can be tailored in response to external stimuli. Significant research is directed toward the development of luminescent materials exhibiting liquid crystallinity for various applications. The present work reports Au(I) complexes featuring N-heterocyclic carbene and phenyl acetylide ligands. [...] Read more.
Liquid crystals exhibit unique properties that can be tailored in response to external stimuli. Significant research is directed toward the development of luminescent materials exhibiting liquid crystallinity for various applications. The present work reports Au(I) complexes featuring N-heterocyclic carbene and phenyl acetylide ligands. Metal complexes enable the utilization of the triplet excitons through their inherent spin–orbit coupling, promoting intersystem crossing from singlet (Sn) to triplet (Tn) states to observe room-temperature phosphorescence (RTP). The strong bonds between carbene and Au enhance the thermal stability, and the substituted benzimidazole ring alters the thermodynamic and photophysical properties of the complexes. Incorporating the acetylide ligands with long alkoxy chains led to the formation of liquid crystalline (LC) phases, which exhibited stability over a wide temperature range. Additionally, the luminescence behavior was affected by the ethynyl ligands, and high quantum yields of RTP were observed. This study establishes the development of LC Au(I) complexes with a thermodynamically stable LC mesophase over a wide temperature range for applications in the field of light-emitting functional materials. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in Japan (2nd Edition))
Show Figures

Figure 1

39 pages, 11795 KiB  
Review
Overview on the Thermally Activated Delayed Fluorescence and Mechanochromic Materials: Bridging Efficiency and Versatility in LECs and OLEDs
by Raheleh Ghahary, Marzieh Rabiei, Sohrab Nasiri, Juozas Padgurskas and Raimundas Rukuiza
Materials 2025, 18(12), 2714; https://doi.org/10.3390/ma18122714 - 9 Jun 2025
Viewed by 586
Abstract
Recent advancements in thermally activated delayed fluorescence (TADF) materials and mechanochromic materials have significantly enhanced the efficiency and versatility of light-emitting electrochemical cells (LECs) and organic light-emitting diodes (OLEDs). TADF materials have enabled efficiency improvements, achieving an internal quantum efficiency (IQE) of nearly [...] Read more.
Recent advancements in thermally activated delayed fluorescence (TADF) materials and mechanochromic materials have significantly enhanced the efficiency and versatility of light-emitting electrochemical cells (LECs) and organic light-emitting diodes (OLEDs). TADF materials have enabled efficiency improvements, achieving an internal quantum efficiency (IQE) of nearly 100% by utilizing both singlet and triplet excitons. Meanwhile, mechanochromic materials exhibit reversible optical changes upon mechanical stimuli, making them promising for stress sensing, encryption, and flexible electronics. The synergistic integration of TADF and mechanochromic materials in OLEDs and LECs has led to enhanced efficiency, stability, and multifunctionality in next-generation lighting and display technologies. This narrative review explores recent breakthroughs in devices that incorporate both TADF and mechanochromic materials as emitters. Particular attention is given to the molecular design that enable both TADF and mechanochromic properties, as well as optimal device structures and performance parameters. Moreover, this review discusses the only LEC fabricated so far using a TADF-mechanochromic emitter, highlighting its performance and potential. Finally, the report concludes with an outlook on the future commercial applications of these materials, particularly in wearable electronics and smart display technologies. Full article
Show Figures

Figure 1

12 pages, 7173 KiB  
Article
Sb3+-Doped Rb2HfCl6 Perovskites as High-Performance Thermally Stable Single-Component Phosphors for White Light-Emitting Diodes
by Yanbiao Li and Yuefeng Gao
Materials 2025, 18(9), 1896; https://doi.org/10.3390/ma18091896 - 22 Apr 2025
Viewed by 534
Abstract
Stable and efficient inorganic lead-free double perovskites are crucial for high-reliability optoelectronic devices. However, dual-doped perovskite phosphors often suffer from poor color stability due to differences in thermal activation energies and electron–phonon interactions between the doped ions. To address this, single-doped Sb3+ [...] Read more.
Stable and efficient inorganic lead-free double perovskites are crucial for high-reliability optoelectronic devices. However, dual-doped perovskite phosphors often suffer from poor color stability due to differences in thermal activation energies and electron–phonon interactions between the doped ions. To address this, single-doped Sb3+-incorporated Rb2HfCl6 perovskite crystals were synthesized via a co-precipitation method. Under UV excitation, Rb2HfCl6:Sb exhibits broad dual emission bands, attributed to singlet and triplet self-trapped exciton radiative transitions induced by Jahn–Teller distortion in [SbCl6]3− octahedra. This dual emission endows the material with high sensitivity to excitation wavelengths, enabling tunable luminescence from cyan to orange-red across 400–800 nm. Utilizing this dual emission, a white LED was fabricated, showcasing a high color rendering index and excellent long-term stability. Remarkably, the material exhibits breakthrough thermal stability, maintaining more than 90% of its emission intensity at 100 °C, while also exhibiting remarkable resistance to humidity and oxygen exposure. Compared to co-doped phosphors, Rb2HfCl6:Sb offers advantages such as environmental friendliness, simple fabrication, and stable performance, making it an ideal candidate for WLEDs. This study demonstrates notable progress in developing thermally stable and reliable optoelectronic devices. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

12 pages, 2536 KiB  
Communication
Synthesis and Electrochemiluminescence of a Di-Boron Thermally Activated Delayed Fluorescence Emitter
by Xiaojie Zhou, Jun Cheng and Hongbo Wang
Molecules 2025, 30(8), 1718; https://doi.org/10.3390/molecules30081718 - 11 Apr 2025
Viewed by 580
Abstract
Recent advances in electrochemiluminescence (ECL) leveraging thermally activated delayed fluorescence (TADF) have highlighted its potential for near-unity exciton harvesting. However, there are still very limited examples of TADF-ECL emitters. We present a rigid diboron-embedded multiple-resonance TADF emitter, which exhibits blue–green emission at 493 [...] Read more.
Recent advances in electrochemiluminescence (ECL) leveraging thermally activated delayed fluorescence (TADF) have highlighted its potential for near-unity exciton harvesting. However, there are still very limited examples of TADF-ECL emitters. We present a rigid diboron-embedded multiple-resonance TADF emitter, which exhibits blue–green emission at 493 nm with a remarkably narrow bandwidth (FWHM = 22 nm) and minimized singlet-triplet energy gap (ΔEST = 0.2 eV), achieving a 67% photoluminescence quantum yield. DFT calculations confirm the short-range charge transfer, enabling narrowband emission. Co-reactant-dependent ECL shows that tripropylamine (TPrA) improves the ECL efficiency from 11% (annihilation) to 51%, while benzoyl peroxide (BPO) yields 1% due to poor radical stabilization. ECL spectra align with photoluminescence, confirming the singlet-state dominance without exciplex interference. TPrA enhances stable radical formation and energy transfer, whereas BPO induces non-radiative losses. These findings establish molecular rigidity and co-reactant selection as pivotal factors in developing high-performance TADF-ECL systems, providing fundamental guidelines for designing organic electrochemiluminescent materials with optimized exciton harvesting efficiency. Full article
(This article belongs to the Special Issue Electrochemistry of Organic and Organometallic Compounds)
Show Figures

Graphical abstract

15 pages, 1634 KiB  
Article
Theoretical Study on Singlet Fission Dynamics and Triplet Migration Process in Symmetric Heterotrimer Models
by Hajime Miyamoto, Kenji Okada, Kohei Tada, Ryohei Kishi and Yasutaka Kitagawa
Molecules 2024, 29(22), 5449; https://doi.org/10.3390/molecules29225449 - 19 Nov 2024
Cited by 1 | Viewed by 1203
Abstract
Singlet fission (SF) is a photophysical process where one singlet exciton splits into two triplet excitons. To construct design guidelines for engineering directional triplet exciton migration, we investigated the SF dynamics in symmetric linear heterotrimer systems consisting of different unsubstituted or 6,13-disubstituted pentacene [...] Read more.
Singlet fission (SF) is a photophysical process where one singlet exciton splits into two triplet excitons. To construct design guidelines for engineering directional triplet exciton migration, we investigated the SF dynamics in symmetric linear heterotrimer systems consisting of different unsubstituted or 6,13-disubstituted pentacene derivatives denoted as X/Y (X, Y: terminal and center monomer species). Time-dependent density functional theory (TDDFT) calculations clarified that the induction effects of the substituents, represented as Hammett’s para-substitution coefficients σp, correlated with both the excitation energies of S1 and T1 states, in addition to the energies of the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO). Electronic coupling calculations and quantum dynamics simulations revealed that the selectivity of spatially separated TT states for heterotrimers increased over 70%, superior to that in the homotrimer: an optimal region of the difference in σp between the substituents of X and Y for the increase in SF rate was found. The origin of the rise in SF rate is explained by considering the quantum interference effect: reduction in structural symmetry opens new interaction paths, allowing the S1-TT mixing, which contributes to accelerating the hetero-fission between the terminal and center molecules. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

14 pages, 3618 KiB  
Article
Original Blue Light-Emitting Diphenyl Sulfone Derivatives as Potential TADF Emitters for OLEDs
by Margarita Anna Zommere, Natalija Tetervenoka, Anna Pidluzhna, Raitis Grzibovskis, Dovydas Blazevicius, Gintare Krucaite, Daiva Tavgeniene, Saulius Grigalevicius and Aivars Vembris
Coatings 2024, 14(10), 1294; https://doi.org/10.3390/coatings14101294 - 11 Oct 2024
Viewed by 1653
Abstract
Organic light-emitting diodes (OLEDs) have emerged as one of the dominant technologies in displays due to their high emission efficiency and low power consumption. However, the development of blue color emitters has fallen behind that of red and green emitters, posing challenges in [...] Read more.
Organic light-emitting diodes (OLEDs) have emerged as one of the dominant technologies in displays due to their high emission efficiency and low power consumption. However, the development of blue color emitters has fallen behind that of red and green emitters, posing challenges in achieving optimal efficiency, stability, and accessibility. In this context, thermally activated delayed fluorescence (TADF) emitters hold promise as a potential solution for cost-effective, exceptionally efficient, and stable blue OLEDs due to their potential high efficiency and stability. TADF is a principle where certain organic materials can efficiently convert both singlet and triplet excitons, theoretically achieving up to 100% internal quantum efficiency. This research focused on diphenyl sulfone derivatives with carbazole groups as TADF compounds. Quantum chemical calculations and photoluminescence properties show the potential TADF properties of the molecules. New materials exhibit glass transition temperatures that would classify them as molecular glasses. Depending on the structure of the molecule, the photoluminescence emission is in the blue or green spectral region. Organic light-emitting diodes were fabricated from neat thin films of emitters by the wet casting method. The best performance in the deep blue emission region was achieved by a device with a turn-on voltage of 4 V and a maximum brightness of 178 cd/m2. In the blue-green emission region, the best performance was observed by an OLED with a turn-on voltage of 3.5 V, reaching a maximum brightness of 660 cd/m2. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

12 pages, 4587 KiB  
Article
Insights into the Structural Modification of Selenium-Doped Derivatives with Narrowband Emissions: A Theory Study
by Qing Zhang, Tao Liu, Xin Huang, Kunyan Wang, Fangxiang Sun, Xin Wang and Chunyan Lv
Molecules 2024, 29(19), 4589; https://doi.org/10.3390/molecules29194589 - 27 Sep 2024
Cited by 1 | Viewed by 1120
Abstract
The research on boron/nitrogen (B/N)-based multiresonance thermally activated delayed fluorescence (MR-TADF) emitters has been a prominent topic due to their narrowband emission and high luminous efficiency. However, devices derived from the common types of narrowband TADF materials often experience an efficiency roll-off, which [...] Read more.
The research on boron/nitrogen (B/N)-based multiresonance thermally activated delayed fluorescence (MR-TADF) emitters has been a prominent topic due to their narrowband emission and high luminous efficiency. However, devices derived from the common types of narrowband TADF materials often experience an efficiency roll-off, which could be ascribed to their relatively slow triplet–singlet exciton interconversion. Since inserting the heavy Se atom into the B/N scheme has been a proven strategy to address the abovementioned issues, herein, extensive density functional theory (DFT) and time-dependent DFT (TD-DFT) simulations have been employed to explore the effects of the structural modification on a series of structurally modified selenium-doped derivatives. Furthermore, the two-layered ONIOM (QM/MM) model has been employed to study the pressure effects on the crystal structure and photophysical properties of the pristine CzBSe. The theoretical results found that the introduced tert-butyl units in Cz-BSeN could result in a shorter charge transfer distance and smaller reorganization energy than the parent CzBSe. In contrast to directly incorporating the o-carborane (Cb) unit to CzBSe, incorporating the bridged phenyl units is important in order to achieve narrowband emissions and high luminous efficiency. The lowest three triplet excited states of CzBSe, Cz-BSeN and PhCb-BSeN all contribute to their triplet–singlet exciton conversions, resulting in a high utilization of triplet excitons. The pressure has an evident influence on the photophysical properties of the aggregated CzBSe and is favored for obtaining narrowband emissions. Our work is promised to provide a feasible strategy for designing selenium-doped derivatives with narrowband emissions and rapid triplet–singlet exciton interconversions. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Graphical abstract

13 pages, 3827 KiB  
Article
Ultrafast Excited State Dynamics of a Verdazyl Diradical System
by Caitlyn Clark, Filip Pawłowski, David J. R. Brook and Christopher Grieco
Photochem 2024, 4(4), 404-416; https://doi.org/10.3390/photochem4040025 - 24 Sep 2024
Viewed by 1817
Abstract
While the photophysics of closed-shell organic molecules is well established, much less is known about open-shell systems containing interacting radical pairs. In this work, we investigate the ultrafast excited state dynamics of a singlet verdazyl diradical system in solution using transient absorption (TA) [...] Read more.
While the photophysics of closed-shell organic molecules is well established, much less is known about open-shell systems containing interacting radical pairs. In this work, we investigate the ultrafast excited state dynamics of a singlet verdazyl diradical system in solution using transient absorption (TA) spectroscopy for the first time. Following 510 nm excitation of the excitonic S0 → S1 transition, we detected TA signals in the 530–950 nm region from the S1 population that decayed exponentially within a few picoseconds to form a vibrationally hot S0* population via internal conversion. The dependence of the S1 decay rate on solvent and radical–radical distance revealed that the excited state possesses charge-transfer character and likely accesses the S0 state via torsional motion. The ultrafast internal conversion decay mechanism at play in our open-shell verdazyl diradicals is in stark contrast with other closed-shell, carbonyl-containing organic chromophores, which exhibit ultrafast intersystem crossing to produce long-lived triplet states as the major S1 decay pathway. Full article
Show Figures

Graphical abstract

11 pages, 2739 KiB  
Article
Pressure-Promoted Triplet-Pair Separation in Singlet-Fission TIPS-Pentacene Nanofilms Revealed by Ultrafast Spectroscopy
by Lu Wang, Ruixue Zhu, Ruihua Pu, Weimin Liu, Yang Lu and Tsu-Chieu Weng
Nanomaterials 2024, 14(18), 1487; https://doi.org/10.3390/nano14181487 - 13 Sep 2024
Cited by 1 | Viewed by 1433
Abstract
Singlet fission (SF), as an effective way to break through the Shockley–Queisser limit, can dramatically improve energy conversion efficiency in solar cell areas. The formation, separation, and relaxation of triplet-pair excitons directly affect the triplet yield, especially triplet-pair separation; thus, how to enhance [...] Read more.
Singlet fission (SF), as an effective way to break through the Shockley–Queisser limit, can dramatically improve energy conversion efficiency in solar cell areas. The formation, separation, and relaxation of triplet-pair excitons directly affect the triplet yield, especially triplet-pair separation; thus, how to enhance the triplet-pair separation rate becomes one of the key points to improve SF efficiency; the decay mechanism where the singlet state is converted into two triplet states is significant for the study of the SF mechanism. Herein, we employ ultrafast transient absorption spectroscopy to study the singlet-fission process of nano-amorphous 6, 13-bis(triisopropylsilylethynyl)-Pentacene (TIPS-pentacene) films in a diamond anvil cell (DAC). A kinetics model related to the structural geometric details, as well as an evaluation of the pressure manipulation impacts, is demonstrated based on the experimental results. The results indicate that pressure manipulation enhanced the triplet-pair separation rates of SF-based materials according to their structural micro-environmental improvement when compressed in DAC, while the triplet-exciton transportation lifetime is prolonged. This work shows that pressure may effectively optimize the structural disorder of SF materials, which were found to improve triplet-pair separation efficiency and potentially offer an effective way to further improve SF efficiency. Full article
(This article belongs to the Special Issue Two-Dimensional Semiconductor Nanostructure and Nanomaterials)
Show Figures

Figure 1

10 pages, 1831 KiB  
Article
The Wannier-Mott Exciton, Bound Exciton, and Optical Phonon Replicas of Single-Crystal GaSe
by Long V. Le, Tran Thi Thu Huong, Tien-Thanh Nguyen, Xuan Au Nguyen, Thi Huong Nguyen, Sunglae Cho, Young Dong Kim and Tae Jung Kim
Crystals 2024, 14(6), 539; https://doi.org/10.3390/cryst14060539 - 8 Jun 2024
Viewed by 1794
Abstract
We report the absorption and photoluminescence spectra of GaSe single crystals in the near-edge region. The temperatures explored the range from 17 to 300 K. Specifically, at a temperature of 17 K, the photoluminescence spectrum reveals an interesting phenomenon: the Wannier-Mott exciton separates [...] Read more.
We report the absorption and photoluminescence spectra of GaSe single crystals in the near-edge region. The temperatures explored the range from 17 to 300 K. Specifically, at a temperature of 17 K, the photoluminescence spectrum reveals an interesting phenomenon: the Wannier-Mott exciton separates into two states. These states are a triplet state with an energy of 2.103 eV and a singlet state with an energy of 2.109 eV. The energy difference between these two states is 6 meV. Furthermore, the bound exciton (BX) can be localized at an energy of 2.093 eV. It is worth noting that its phonon replicas (BX-nLO) can be clearly distinguished up to the fourth order. Interestingly, the energy gaps between these replicas exhibit a consistent spacing of 7 ± 0.5 meV. This intriguing finding suggests a high-quality crystalline structure as well as a strong coupling between the phonon and BX-nLO. Additionally, at low temperatures, both the ground state (n = 1) at 2.11 eV and the excited state (n = 2) at 2.127 eV of free excitons can be observed. Full article
(This article belongs to the Topic Optoelectronic Materials, 2nd Volume)
Show Figures

Figure 1

19 pages, 12218 KiB  
Article
Excited-State Dynamics of Carbazole and tert-Butyl-Carbazole in Thin Films
by Konstantin Moritz Knötig, Domenic Gust, Kawon Oum and Thomas Lenzer
Photochem 2024, 4(2), 179-197; https://doi.org/10.3390/photochem4020011 - 9 Apr 2024
Cited by 3 | Viewed by 1761
Abstract
Thin films of carbazole (Cz) derivatives are frequently used in organic electronics, such as organic light-emitting diodes (OLEDs). Because of the proximity of the Cz units, the excited-state relaxation in such films is complicated, as intermolecular pathways, such as singlet–singlet annihilation (SSA), kinetically [...] Read more.
Thin films of carbazole (Cz) derivatives are frequently used in organic electronics, such as organic light-emitting diodes (OLEDs). Because of the proximity of the Cz units, the excited-state relaxation in such films is complicated, as intermolecular pathways, such as singlet–singlet annihilation (SSA), kinetically compete with the emission. Here, we provide an investigation of two benchmark systems employing neat carbazole and 3,6-di-tert-butylcarbazole (t-Bu-Cz) films and also their thin film blends with poly(methyl methacrylate) (PMMA). These are investigated by a combination of atomic force microscopy (AFM), femtosecond and nanosecond transient absorption spectroscopy (fs-TA and ns-TA) and time-resolved fluorescence. Excitonic J-aggregate-type features are observed in the steady-state absorption and emission spectra of the neat films. The S1 state shows a broad excited-state absorption (ESA) spanning the entire UV–Vis–NIR range. At high S1 exciton number densities of about 4 × 1018 cm−3, bimolecular diffusive S1–S1 annihilation is found to be the dominant SSA process in the neat films with a rate constant in the range of 1–2 × 10−8 cm3 s−1. SSA produces highly vibrationally excited molecules in the electronic ground state (S0*), which cool down slowly by heat transfer to the quartz substrate. The results provide relevant photophysical insight for a better microscopic understanding of carbazole relaxation in thin-film environments. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry II)
Show Figures

Graphical abstract

19 pages, 3872 KiB  
Article
Derivatives of Phenyl Pyrimidine and of the Different Donor Moieties as Emitters for OLEDs
by Hryhorii Starykov, Oleksandr Bezvikonnyi, Karolis Leitonas, Jurate Simokaitiene, Dmytro Volyniuk, Eigirdas Skuodis, Rasa Keruckiene and Juozas Vidas Grazulevicius
Materials 2024, 17(6), 1357; https://doi.org/10.3390/ma17061357 - 15 Mar 2024
Cited by 3 | Viewed by 1673
Abstract
Two derivatives of phenyl pyrimidine as acceptor unit and triphenylamino or 4,4′-dimethoxytriphenylamino donor groups were designed and synthesized as emitters for organic light-emitting diodes (OLEDs) aiming to utilize triplet excitons in the electroluminescence. Thermogravimetric analysis revealed high thermal stability of the compounds with [...] Read more.
Two derivatives of phenyl pyrimidine as acceptor unit and triphenylamino or 4,4′-dimethoxytriphenylamino donor groups were designed and synthesized as emitters for organic light-emitting diodes (OLEDs) aiming to utilize triplet excitons in the electroluminescence. Thermogravimetric analysis revealed high thermal stability of the compounds with 5% weight loss temperatures of 397 and 438 °C. The theoretical estimations and photophysical data show the contributions of local excited and charge transfer states into emission. The addition of the methoxy groups led to the significant improvement of hole-transporting properties and the bathochromic shift of the emission from blue to green-blue spectral diapason. It is shown that mixing of the compounds with the organic host results in facilitation of the delayed emission. The singlet–triplet energy splitting was found to be too big for the thermally activated delayed fluorescence. No thermal activation of the long-lived emission was detected. No experimental evidence for triplet–triplet annihilation and room temperature phosphorescence were detected making the hot exciton mechanism the most probable one. The OLEDs based on the compounds reached the maximum external quantum efficiency of up to 10.6%. Full article
Show Figures

Graphical abstract

35 pages, 1758 KiB  
Review
A Review of Benzophenone-Based Derivatives for Organic Light-Emitting Diodes
by Dovydas Blazevicius and Saulius Grigalevicius
Nanomaterials 2024, 14(4), 356; https://doi.org/10.3390/nano14040356 - 14 Feb 2024
Cited by 8 | Viewed by 3555
Abstract
Organic light-emitting diodes (OLEDs) have garnered considerable attention in academic and industrial circles due to their potential applications in flat-panel displays and solid-state lighting technologies, leveraging the advantages offered by organic electroactive derivatives over their inorganic counterparts. The thin and flexible design of [...] Read more.
Organic light-emitting diodes (OLEDs) have garnered considerable attention in academic and industrial circles due to their potential applications in flat-panel displays and solid-state lighting technologies, leveraging the advantages offered by organic electroactive derivatives over their inorganic counterparts. The thin and flexible design of OLEDs enables the development of innovative lighting solutions, facilitating the creation of customizable and contoured lighting panels. Among the diverse electroactive components employed in the molecular design of OLED materials, the benzophenone core has attracted much attention as a fragment for the synthesis of organic semiconductors. On the other hand, benzophenone also functions as a classical phosphor with high intersystem crossing efficiency. This characteristic makes it a compelling candidate for effective reverse intersystem crossing, with potential in leading to the development of thermally activated delayed fluorescent (TADF) emitters. These emitting materials witnessed a pronounced interest in recent years due to their incorporation in metal-free electroactive frameworks and the capability to convert triplet excitons into emissive singlet excitons through reverse intersystem crossing (RISC), consequently achieving exceptionally high external quantum efficiencies (EQEs). This review article comprehensively overviews the synthetic pathways, thermal characteristics, electrochemical behaviour, and photophysical properties of derivatives based on benzophenone. Furthermore, we explore their applications in OLED devices, both as host materials and emitters, shedding light on the promising opportunities that benzophenone-based compounds present in advancing OLED technology. Full article
Show Figures

Figure 1

13 pages, 2298 KiB  
Article
Organoboron Complexes as Thermally Activated Delayed Fluorescence (TADF) Materials for Organic Light-Emitting Diodes (OLEDs): A Computational Study
by Jamilah A. Asiri, Walid M. I. Hasan, Abdesslem Jedidi, Shaaban A. Elroby, Saadullah G. Aziz and Osman I. Osman
Molecules 2023, 28(19), 6952; https://doi.org/10.3390/molecules28196952 - 6 Oct 2023
Cited by 2 | Viewed by 2455
Abstract
We report on organoboron complexes characterized by very small energy gaps (ΔEST) between their singlet and triplet states, which allow for highly efficient harvesting of triplet excitons into singlet states for working as thermally activated delayed fluorescence (TADF) devices. Energy gaps [...] Read more.
We report on organoboron complexes characterized by very small energy gaps (ΔEST) between their singlet and triplet states, which allow for highly efficient harvesting of triplet excitons into singlet states for working as thermally activated delayed fluorescence (TADF) devices. Energy gaps ranging between 0.01 and 0.06 eV with dihedral angles of ca. 90° were registered. The spin–orbit couplings between the lowest excited S1 and T1 states yielded reversed intersystem crossing rate constants (KRISC) of an average of 105 s−1. This setup accomplished radiative decay rates of ca. 106 s−1, indicating highly potent electroluminescent devices, and hence, being suitable for application as organic light-emitting diodes. Full article
Show Figures

Graphical abstract

21 pages, 4646 KiB  
Review
Overcoming the Limitation of Spin Statistics in Organic Light Emitting Diodes (OLEDs): Hot Exciton Mechanism and Its Characterization
by Soo Wan Park, Dongwook Kim and Young Min Rhee
Int. J. Mol. Sci. 2023, 24(15), 12362; https://doi.org/10.3390/ijms241512362 - 2 Aug 2023
Cited by 19 | Viewed by 3787
Abstract
Triplet harvesting processes are essential for enhancing efficiencies of fluorescent organic light-emitting diodes. Besides more conventional thermally activated delayed fluorescence and triplet-triplet annihilation, the hot exciton mechanism has been recently noticed because it helps reduce the efficiency roll-off and improve device stability. Hot [...] Read more.
Triplet harvesting processes are essential for enhancing efficiencies of fluorescent organic light-emitting diodes. Besides more conventional thermally activated delayed fluorescence and triplet-triplet annihilation, the hot exciton mechanism has been recently noticed because it helps reduce the efficiency roll-off and improve device stability. Hot exciton materials enable the conversion of triplet excitons to singlet ones via reverse inter-system crossing from high-lying triplet states and thereby the depopulation of long-lived triplet excitons that are prone to chemical and/or efficiency degradation. Although their anti-Kasha characteristics have not been clearly explained, numerous molecules with behaviors assigned to the hot exciton mechanism have been reported. Indeed, the related developments appear to have just passed the stage of infancy now, and there will likely be more roles that computational elucidations can play. With this perspective in mind, we review some selected experimental studies on the mechanism and the related designs and then on computational studies. On the computational side, we examine what has been found and what is still missing with regard to properly understanding this interesting mechanism. We further discuss potential future points of computational interests toward aiming for eventually presenting in silico design guides. Full article
(This article belongs to the Special Issue State-of-the-Art Physical Chemistry and Chemical Physics in Korea)
Show Figures

Figure 1

Back to TopTop