Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = single-phase quasi impedance source inverters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8084 KiB  
Article
Current-Prediction-Controlled Quasi-Z-Source Cascaded Multilevel Photovoltaic Inverter
by Shanshan Lei, Ningzhi Jin and Jiaxin Jiang
Electronics 2024, 13(10), 1824; https://doi.org/10.3390/electronics13101824 - 8 May 2024
Cited by 2 | Viewed by 1302
Abstract
To address problems that traditional two-stage inverters suffer such as high cost, low efficiency, and complex control, this study adopts a quasi-Z-source cascaded multilevel inverter. Firstly, the quasi-Z-source inverter utilizes a unique impedance network to achieve single-stage boost and inversion without requiring a [...] Read more.
To address problems that traditional two-stage inverters suffer such as high cost, low efficiency, and complex control, this study adopts a quasi-Z-source cascaded multilevel inverter. Firstly, the quasi-Z-source inverter utilizes a unique impedance network to achieve single-stage boost and inversion without requiring a dead zone setting. Additionally, its cascaded multilevel structure enables independent control of each power unit structure without capacitor voltage sharing problems. Secondly, this study proposes a current-predictive control strategy to reduce current harmonics on the grid side. Moreover, the feedback model of current and system state is established, and the fast control of grid-connected current is realized with the deadbeat control weighted by the predicted current deviation. And a grid-side inductance parameter identification is added to improve control accuracy. Also, an improved multi-carrier phase-shifted sinusoidal PWM method is adopted to address the issue of switching frequency doubling, which is caused by the shoot-through zero vector in quasi-Z-source inverters. Finally, the problems of switching frequency doubling and high harmonics on the grid side are solved by the improved deadbeat control strategy with an improved MPSPWM method. And a seven-level simulation model is built in MATLAB (2022b) to verify the correctness and superiority of the above theory. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

25 pages, 6230 KiB  
Article
Improved Carrier-Based Modulation for the Single-Phase T-Type qZ Source Inverter
by Vitor Fernão Pires, Armando Cordeiro, Daniel Foito, Carlos Roncero-Clemente, Enrique Romero-Cadaval and José Fernando Silva
Electronics 2024, 13(6), 1113; https://doi.org/10.3390/electronics13061113 - 18 Mar 2024
Cited by 2 | Viewed by 1400
Abstract
The Quasi-Impedance-Source Inverter (Quasi-Z inverter) is an interesting DC-AC converter topology that can be used in applications such as fuel cells and photovoltaic generators. This topology allows for both boost capability and DC-side continuous input current. Another very interesting feature is its reliability, [...] Read more.
The Quasi-Impedance-Source Inverter (Quasi-Z inverter) is an interesting DC-AC converter topology that can be used in applications such as fuel cells and photovoltaic generators. This topology allows for both boost capability and DC-side continuous input current. Another very interesting feature is its reliability, as it limits the current when two switches on one leg are conducting simultaneously. This is due to an extra conduction state, specifically the shoot-through state. However, the shoot-through state also causes a loss of performance, increasing electromagnetic interference and harmonic distortion. To address these issues, this work proposes a modified carrier-based control method for the T-Type single-phase quasi-Z inverter. The modified carrier-based method introduces the use of two additional states to replace the standard shoot-through state. The additional states are called the upper shoot-through and the lower shoot-through. An approach to minimize the number of switches that change state during transitions will also be considered to reduce switching losses, improving the converter efficiency. The proposed modified carrier-based control strategy will be tested using computer simulations and laboratory experiments. From the obtained results, the theoretical considerations are confirmed. In fact, through the presented results, it is possible to understand important improvements that can be obtained in the THD of the output voltage and load current. In addition, it is also possible to verify that the modified carrier method also reduces the input current ripple. Full article
Show Figures

Figure 1

24 pages, 4642 KiB  
Article
A Comprehensive Small-Signal Model Formulation and Analysis for the Quasi-Y Impedance-Source Inverter
by Rafael Santos, Marcus V. M. Rodrigues, Luis De Oro Arenas and Flávio A. S. Gonçalves
Energies 2023, 16(13), 4877; https://doi.org/10.3390/en16134877 - 22 Jun 2023
Cited by 2 | Viewed by 2515
Abstract
This paper presents a detailed derivation of the small-signal model and components design considerations for the Quasi-Y-Source inverter. The design methodology is based on the converter steady-state operation, considering the impedance network inductor and capacitor voltage and charge balances, respectively. Moreover, the additional [...] Read more.
This paper presents a detailed derivation of the small-signal model and components design considerations for the Quasi-Y-Source inverter. The design methodology is based on the converter steady-state operation, considering the impedance network inductor and capacitor voltage and charge balances, respectively. Moreover, the additional design criteria for component selection, considering control constraints and performance compromise, are given by parametric variation analysis based on converter dynamic response. The small-signal model and transfer functions are obtained using a state-space averaged model, including converter non-ideal characteristics given by equivalent-series resistances (ESR), which makes possible the proposition of different control strategies, using both single or multi-loop schemes. To demonstrate the usefulness of the proposed small-signal model, a DSP-based single-loop type-II PI control strategy is used in which the peak DC-link voltage is indirectly controlled through the measurement of the impedance network capacitor voltage. The controller and converter performances are verified with simulation and experimental results and successfully confirm the validity of the proposed dynamic model. Finally, the obtained results are validated with a built small-scale three-phase/three-wire inverter prototype. Full article
(This article belongs to the Special Issue Control and Modeling of Power Converters and Inverters)
Show Figures

Figure 1

28 pages, 7611 KiB  
Article
Three-Leg Quasi-Z-Source Inverter with Input Ripple Suppression for Renewable Energy Application
by Chuanyu Zhang, Chuanxu Cao, Ruiqi Chen and Jiahui Jiang
Energies 2023, 16(11), 4393; https://doi.org/10.3390/en16114393 - 29 May 2023
Cited by 20 | Viewed by 2189
Abstract
Single-phase inverters are widely employed in renewable energy applications. However, their inherent 2ω-ripple power can substantially affect system performance, leading to fluctuations in the maximum power points (MPP) of photovoltaic (PV) systems and shortening the lifespans of fuel cell (FC) systems. To alleviate [...] Read more.
Single-phase inverters are widely employed in renewable energy applications. However, their inherent 2ω-ripple power can substantially affect system performance, leading to fluctuations in the maximum power points (MPP) of photovoltaic (PV) systems and shortening the lifespans of fuel cell (FC) systems. To alleviate input ripple, a three-leg quasi-Z-source inverter (QZSI) and its associated control strategy are proposed. The QZSI consists of a quasi-Z-source network, an H-Bridge inverter, and an active power filter (APF). The active filtering structure comprises filtering capacitors and the third bridge leg. The proposed control strategy consists of three loops: open-loop simple boost control, output voltage control, and 2ω-ripple suppression control. Open-loop simple boost control is utilized for shoot-through state modulation, output voltage control is applied to the two bridge-legs of the H-Bridge, and the additional third bridge-leg adopts a quasi-PR control (QPR) method that injects specific frequency harmonic voltage and suppresses newly generated low-frequency components of the input current. This method effectively avoids the drawbacks of utilizing passive filtering strategies, such as high-value impedance networks, low power density, and weak system stability. A simulation platform of 300W 144VDC/110VAC50Hz is constructed. The simulation results indicate that the addition of the third bridge leg under full load conditions reduces the input-side inductor current ripple ΔI from 1.89 A with passive filtering to 0.513 A, representing a reduction of 72.86%. The second harmonic ripple of the input current is reduced from 18.2% to 4.5%, and the fourth harmonic ripple is reduced from 16.5% to 2.1%. The DC bus voltage ripple ΔVPN falls from 70.75 V to 6.54 V, representing a reduction of 90.76%. The Total Harmonic Distortion (THD) of the output voltage and current are both less than 1%. The simulation results validated the feasibility of the proposed approach. Full article
Show Figures

Figure 1

20 pages, 8650 KiB  
Article
Application of a Control Scheme Based on Predictive and Linear Strategy for Improved Transient State and Steady-State Performance in a Single-Phase Quasi-Z-Source Inverter
by Manuel Diaz-Bustos, Carlos R. Baier, Miguel A. Torres, Pedro E. Melin and Pablo Acuna
Sensors 2022, 22(7), 2458; https://doi.org/10.3390/s22072458 - 23 Mar 2022
Cited by 12 | Viewed by 2569
Abstract
Z and quasi-Z-source inverters (Z/qZSI) have a nonlinear impedance network on their dc side, which allows the system to behave as a buck–boost converter in their outputs. The challenges derived from the qZSI topology include (a) the control of the voltage and [...] Read more.
Z and quasi-Z-source inverters (Z/qZSI) have a nonlinear impedance network on their dc side, which allows the system to behave as a buck–boost converter in their outputs. The challenges derived from the qZSI topology include (a) the control of the voltage and current on its nonlinear impedance network, (b) the dynamic coupling between the ac and dc variables, and (c) the fact that a unique set of switches are used to manage the power at dc and ac side of the system. In this work, a control scheme that combines a PWM linear control strategy and a strategy based on finite control state model predictive control (FCS-MPC) is proposed. The linear approach works during steady state, while the FCS-MPC works during transient states, either in the start-up of the converter or during sudden reference changes. This work aims to show that the performance of this control proposal retains the best characteristics of both schemes, which allows it to achieve high-quality waveforms and error-free steady state, as well as a quick dynamic response during transients. The feasibility of the proposal is validated through experimental results. Full article
Show Figures

Figure 1

20 pages, 5180 KiB  
Article
Lyapunov-Function-Based Controller for Single-Phase NPC Quasi-Z-Source Inverter with 2ω Frequency Ripple Suppression
by Sertac Bayhan and Hasan Komurcugil
Energies 2021, 14(1), 140; https://doi.org/10.3390/en14010140 - 29 Dec 2020
Cited by 2 | Viewed by 2737
Abstract
This paper proposes a high-performance control technique based on Lyapunov’s stability theory for a single-phase grid-connected neutral-point-clamped quasi-impedance source inverter with LCL filter. The Lyapunov function based control is employed to regulate the inverter output current, whereas the proportional resonant controller is used [...] Read more.
This paper proposes a high-performance control technique based on Lyapunov’s stability theory for a single-phase grid-connected neutral-point-clamped quasi-impedance source inverter with LCL filter. The Lyapunov function based control is employed to regulate the inverter output current, whereas the proportional resonant controller is used to produce the reference of the inverter output current that is needed in the Lyapunov function based control. Use of proportional resonant controller ensures the zero steady-state error in the grid current. An important feature of the proposed Lyapunov function based control is the achievement of resonance damping without using a dedicated damping method. Furthermore, the modified simple boost control technique is proposed to eliminate the double-line frequency ripples in the quasi-impedance source inductor currents and minimize the double-line frequency ripples in the quasi-impedance source capacitor voltages. The proposed control technique considerably reduces the inverter size, weight, and cost as well as increases overall system efficiency since the required inductances and capacitances sizes are lower. Experimental results obtained from a 2.5 kW neutral-point-clamped quasi-impedance source inverter prototype are presented to validate the performance of the Lyapunov function based control technique. Full article
(This article belongs to the Special Issue Impedance Source Converters: Topologies, Control, and Applications)
Show Figures

Figure 1

18 pages, 4328 KiB  
Article
Voltage Multiplier Cell-Based Quasi-Switched Boost Inverter with Low Input Current Ripple
by Minh-Khai Nguyen and Youn-Ok Choi
Electronics 2019, 8(2), 227; https://doi.org/10.3390/electronics8020227 - 18 Feb 2019
Cited by 18 | Viewed by 5968
Abstract
A novel single-phase single-stage voltage multiplier cell-based quasi-switched boost inverter (VMC-qSBI) is proposed in this paper. By adding the voltage multiplier cell to the qSBI, the proposed VMC-qSBI has the following merits; a decreased voltage stress on an additional switch, a high voltage [...] Read more.
A novel single-phase single-stage voltage multiplier cell-based quasi-switched boost inverter (VMC-qSBI) is proposed in this paper. By adding the voltage multiplier cell to the qSBI, the proposed VMC-qSBI has the following merits; a decreased voltage stress on an additional switch, a high voltage gain, a continuous input current, shoot through immunity, and a high modulation index. A new pulse-width modulation (PWM) control strategy is presented for the proposed inverter to reduce the input current ripple. To improve the voltage gain of the proposed inverter, an extension is addressed by adding the VMCs. The operating principle, steady-state analysis, and impedance parameter design guideline of the proposed inverter are presented. A comparison between the proposed inverter and other impedance source-based high-voltage gain inverters is shown. Simulation and experimental results are provided to confirm the theoretical analysis. Full article
(This article belongs to the Special Issue Power Converters in Power Electronics)
Show Figures

Figure 1

Back to TopTop