Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = shore D hardness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 736 KiB  
Article
Exploring Polymeric Surfaces Manufactured Under Different Temperature Conditions—A Preliminary Experimental Study of Hardness
by Bozhana Chuchulska, Mariya Dimitrova, Boyan Dochev and Kliment Georgiev
J 2025, 8(3), 22; https://doi.org/10.3390/j8030022 - 28 Jun 2025
Viewed by 234
Abstract
Polymers are essential materials in the fabrication of partial and complete dentures, where their mechanical properties directly impact durability, comfort, and clinical performance. This study examines the influence of different manufacturing temperatures on the surface hardness of polymeric materials used in dental applications. [...] Read more.
Polymers are essential materials in the fabrication of partial and complete dentures, where their mechanical properties directly impact durability, comfort, and clinical performance. This study examines the influence of different manufacturing temperatures on the surface hardness of polymeric materials used in dental applications. A total of 60 experimental samples with a rectangular shape of Vertex ThermoSens polymer (Vertex Dental, 3D Systems, Soesterberg, The Netherlands) were fabricated through injection molding at 280 °C and 300 °C and analyzed over time to assess changes in their properties. Hardness measurements, conducted using the EQUOTIP Shore D hardness tester (Proceq SA, Schwerzenbach, Canton of Zürich, Switzerland), indicated increased hardness over time, with higher values observed in samples fabricated at 300 °C. A two-way ANOVA was performed to evaluate the statistical significance of temperature and time on hardness, revealing a significant effect (F = 14.73, p = 0.0185). These findings suggest that processing polymers at elevated temperatures improves surface hardness, significant for denture longevity and patient comfort. Increased hardness contributes to greater wear resistance. Optimizing polymer manufacturing conditions can thus lead to improved clinical outcomes, ensuring more durable and biocompatible dental prostheses. Full article
Show Figures

Figure 1

22 pages, 15301 KiB  
Article
The Impact of Destructive Climatic Factors on the Mechanical and Performance Properties of Structural Materials
by Paweł Widomski, Przemysław Maksymowicz, Oliwia Trzaska, Paulina Mayer-Trzaskowska, Paweł Kaczyński, Anna Berbesz-Wyrodek, Barbara Gronostajska, Waldemar Bober and Michał Kogut
Materials 2025, 18(13), 2970; https://doi.org/10.3390/ma18132970 - 23 Jun 2025
Viewed by 339
Abstract
This study investigates the effects of destructive climatic factors on the mechanical and performance properties of various structural materials, encompassing both polymers and metals. Over recent decades, the growing adoption of synthetic polymers has revolutionized engineering applications, yet their susceptibility to environmental degradation [...] Read more.
This study investigates the effects of destructive climatic factors on the mechanical and performance properties of various structural materials, encompassing both polymers and metals. Over recent decades, the growing adoption of synthetic polymers has revolutionized engineering applications, yet their susceptibility to environmental degradation poses significant challenges. This research emphasizes the need for comprehensive testing under both operational and environmental stressors, including extreme temperatures, UV radiation, and moisture, to assess material durability and performance. Mechanical tests were conducted at ambient (25 °C) and low temperatures (−50 °C) to evaluate the strength and strain responses of selected materials. Additionally, a 12-month accelerated aging process using UV radiation and elevated temperatures was performed to simulate long-term environmental exposure. Parameters such as Shore D hardness, gloss, and mass were measured at regular intervals to quantify material degradation. The results revealed significant differences in performance across material types. Among polymers, laser-extruded and milky plexiglass, as well as solid polycarbonate, exhibited satisfactory resistance to aging, with minimal changes in mechanical properties. However, high-impact polystyrene displayed substantial deformation and hardness loss after prolonged UV exposure. For metals, aluminum and stainless steel (304 and 316) demonstrated exceptional durability, retaining structural and aesthetic properties after 12 months of accelerated aging, whereas galvanized steel exhibited pronounced corrosion. The study highlights the critical interplay between mechanical loading and environmental factors, stressing the importance of material selection tailored to specific climatic conditions. It further underscores the value of integrating experimental findings with predictive models, such as finite element analysis, to enhance the design and longevity of engineering materials. The findings provide actionable insights for industries operating in temperate climates, where materials are subjected to diverse and cyclic environmental stressors. Recommendations are offered for selecting resilient materials suitable for protective housings and structural components. Full article
Show Figures

Figure 1

16 pages, 4211 KiB  
Article
Fabrication, Properties, and Morphologies of Novel Acacia–Jute Hybrid Polymer Composites
by Rittin Abraham Kurien, Mahdi Bodaghi, Nibish D. Mathew, Mebin Paul, Sooraj V. Ravi and Pranav Praveen
J. Compos. Sci. 2025, 9(7), 316; https://doi.org/10.3390/jcs9070316 - 22 Jun 2025
Viewed by 548
Abstract
In recent years, industries have prioritized low-cost, biodegradable, long-lasting materials. Businesses are focusing on composite materials using the world’s abundant natural fibers. Researchers and academics are considering using plant and animal fibers as polymer composite reinforcement to enhance their sustainability. In this context, [...] Read more.
In recent years, industries have prioritized low-cost, biodegradable, long-lasting materials. Businesses are focusing on composite materials using the world’s abundant natural fibers. Researchers and academics are considering using plant and animal fibers as polymer composite reinforcement to enhance their sustainability. In this context, finding new plant fibers for polymer composite reinforcement is important. This study hybridizes jute and acacia fibers using compression molding and changing epoxy fiber weight percentages to create novel polymer composites. This article examines how fiber orientation affects mechanical and morphological analysis for manufactured jute–acacia hybrid composites. The composite had the highest tensile strength of 33.59 MPa, a flexural strength of 66.42 MPa, an impact strength of 3.22 J/m, and a hardness of 85 Shore D. The scanning electron microscope (SEM) showed that alkali treatment filled microscopic cracks, gaps, and pores in natural fiber composites, improving their tensile, flexural, and impact strength. Sandwich composites had better mechanical and morphological qualities than two-layer stack patterned composites. The research findings of jute–acacia fiber-based composites can be applied in various industrial applications. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

17 pages, 6263 KiB  
Article
The Characterization of Polymers That Mimic the Aortic Wall’s Mechanical Properties and Their Suitability for Use in the 3D Printing of Aortic Phantoms
by Moritz Wegner, Benan Sahin Karagoez, David Wippel, Florian K. Enzmann, Anja Niehoff, Oroa Salem and Bernhard Dorweiler
Polymers 2025, 17(12), 1700; https://doi.org/10.3390/polym17121700 - 19 Jun 2025
Viewed by 473
Abstract
(1) While three-dimensional (3D) printing technology is increasingly being used for the fabrication of high-fidelity, patient-specific aortic models, data on the mechanical properties of polymers are sparse. Therefore, the aim of this study was to identify suitable polymers for this purpose. (2) Methods: [...] Read more.
(1) While three-dimensional (3D) printing technology is increasingly being used for the fabrication of high-fidelity, patient-specific aortic models, data on the mechanical properties of polymers are sparse. Therefore, the aim of this study was to identify suitable polymers for this purpose. (2) Methods: Eight flexible polymers, with Shore A hardnesses (ShA) of 27–85, were tested to determine their suitability for PolyJet printing technology. They were tested against porcine aortic and bovine pericardial tissue for suture retention strength, uniaxial stress testing according to ISO 37, and burst pressure in a standardized test setting. (3) Results: The polymers with a ShA of 30–50 showed statistically non-inferior suture retention strength, tensile strength, and burst pressure resistance when compared to pericardial and aortic tissue, respectively. (4) Conclusions: This was the first report to analyze the mechanical properties of eight different flexible PolyJet polymers. We found that the polymers with a Shore A hardness of 30–50 most closely mimicked the mechanical properties of aortic tissue. Therefore, they can be recommended for the additive manufacturing (3D printing) of aortic phantoms for simulation and training purposes. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

15 pages, 7618 KiB  
Article
Effect of Filler Type, Content, and Silanization on the Flexural Strength, Elastic Modulus, Shore D Hardness, and Two-Body Wear of PAEK Compounds
by Felix Schmeiser, Wofgang Schramm, Felicitas Mayinger, Uwe Baumert and Bogna Stawarczyk
Materials 2025, 18(12), 2736; https://doi.org/10.3390/ma18122736 - 11 Jun 2025
Viewed by 350
Abstract
The aim of this study was to evaluate the influence of filler type, filler content, and filler silanization on the flexural strength (FX), elastic modulus (Em), shore D hardness (SDH), and two-body wear (2BW) of polyaryletherketone (PAEK) compounds. Specimens (40 wt% [...] Read more.
The aim of this study was to evaluate the influence of filler type, filler content, and filler silanization on the flexural strength (FX), elastic modulus (Em), shore D hardness (SDH), and two-body wear (2BW) of polyaryletherketone (PAEK) compounds. Specimens (40 wt% PEEK, 40 wt% PEK) with different filler types: 20 wt%: fumed silica (FS), calcium silicate (CS), feldspar (FP), magnesium silicate hydrate (MSH), no filler (NF); different filler content: 20, 25 or 30 wt% CS; different filler silanization: 20 wt% CS silanized with alkylsilane/aminosilane, FP silanized with methylsilane/ vinylsilane, no silanization; and PEEK20 (BioHPP) or PEEK25 (BioHPP plus) controls were fabricated and tested for FX, Em, and SDH. Two-body wear (4 × 100,000 cycles, 50 N, 2.5 Hz) with composite resin antagonists was measured with PAEKi (35 wt% PEEK, 35 wt% PEK, 30 wt% CS), PAEKii (70 wt% PEEK, 30 wt% CS), PAEKiii (70 wt% PEEK, 25 wt% CS, 5 wt% FP), and PEEK20 controls. Data were analyzed with Kolmogorov–Smirnov-, Kruskal–Wallis-H-, post hoc Scheffé test, pairwise comparisons, Bonferroni correction, one-way ANOVA, and Spearman rho (α = 0.05). An abrasion area analysis was performed. Adding filler increased FX, Em, and SDH, with CS and MSH showing the highest values for FX and Em. Adding 30 wt% CS increased FX, Em, and SDH compared with 20 wt%. Silanization with methylsilane increased FX, Em, and SDH. Silanization with aminosilane increased FX and SDH. PEEK20 showed the lowest 2BW compared with all EPCs. No material losses were detected on the antagonists. PAEK compounds with 25 to 30 wt% CS increased FX and Em compared to lower contents, no filler, or PEEK20. Higher values of FX and Em did not lead to lower 2BW. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

19 pages, 5355 KiB  
Article
Effect of Cotton Stalk Biochar Content on the Properties of Cotton Stalk and Residual Film Composites
by Zhipeng Song, Xiaoyun Lian, Junhui Ran, Xuan Zheng, Xufeng Wang and Xiaoqing Lian
Agriculture 2025, 15(12), 1243; https://doi.org/10.3390/agriculture15121243 - 7 Jun 2025
Cited by 1 | Viewed by 515
Abstract
This study aims to improve the performance of wood–plastic composites (WPCs) composed of cotton stalk powder and residual film particles. Additionally, it aims to promote the efficient utilization of cotton stalk biochar. The composites were prepared using modified cotton stalk biochar and xylem [...] Read more.
This study aims to improve the performance of wood–plastic composites (WPCs) composed of cotton stalk powder and residual film particles. Additionally, it aims to promote the efficient utilization of cotton stalk biochar. The composites were prepared using modified cotton stalk biochar and xylem powder as the matrix, maleic anhydride grafted high-density polyethylene (MA-HDPE) as the coupling agent, and polyethylene (PE) residual film particles as the filler. The WPCs were fabricated through melt blending using a twin-screw extruder. Mechanical properties were evaluated using a universal testing machine and texture analyzer, Shore D hardness was measured using a durometer, and microstructure was analyzed using a high-resolution digital optical microscope. A systematic investigation was conducted on the effect of biochar content on material properties. The results indicated that modified biochar significantly enhanced the mechanical and thermal properties of the WPCs. At a biochar content of 80%, the material achieved optimal performance, with a hardness of 57.625 HD, a bending strength of 463.159 MPa, and a tensile strength of 13.288 MPa. Additionally, thermal conductivity and thermal diffusivity decreased to 0.174 W/(m·K) and 0.220 mm2/s, respectively, indicating improved thermal insulation properties. This research provides a novel approach for the high-value utilization of cotton stalks and residual films, offering a potential solution to reduce agricultural waste pollution in Xinjiang and contributing to the development of low-cost and high-performance WPCs with wide-ranging applications. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

21 pages, 7002 KiB  
Article
The Effect of Nano-Biochar Derived from Olive Waste on the Thermal and Mechanical Properties of Epoxy Composites
by Muhammed İhsan Özgün, Vildan Erci, Emrah Madenci and Fatih Erci
Polymers 2025, 17(10), 1337; https://doi.org/10.3390/polym17101337 - 14 May 2025
Viewed by 526
Abstract
The increasing demand for the development of environmentally friendly alternatives to petroleum-derived materials has increased research efforts on sustainable polymer composites. This study systematically examined the effect of nano-biochar derived from agricultural wastes such as olive pulp on the mechanical and thermal properties [...] Read more.
The increasing demand for the development of environmentally friendly alternatives to petroleum-derived materials has increased research efforts on sustainable polymer composites. This study systematically examined the effect of nano-biochar derived from agricultural wastes such as olive pulp on the mechanical and thermal properties of epoxy-resin-based composites. First, the biochar from olive pulp was produced by pyrolysis at 450 °C and turned to nano-biochar using ball milling. Composite samples containing nano-biochar at different rates between 0 and 10% were prepared. The nano-biochar and composite samples were characterized by using different techniques such as SEM-EDS, BET, FTIR, XRD, Raman, TGA, and DMA analyses. Also, the tensile strength, elastic modulus, Shore D hardness, thermal stability, and static toughness of the composite samples were evaluated. The best performance was observed in the sample containing 6% nano-biochar; the ultimate tensile strength increased from 17.37 MPa to 23.46 MPa compared to pure epoxy, and the elastic modulus and hardness increased. However, a decrease in brittleness and toughness was observed at higher additive rates. FTIR and DMA analyses indicated that the nano-biochar interacted strongly with the epoxy matrix and increased its thermal stability. The results showed that the olive-pulp-derived nano-biochar could be used to improve the structural and thermal properties of the epoxy composites as an inexpensive and environmentally friendly filler. As a result, this study contributes to the production of new polymer-based materials that will encourage the production of environmentally friendly composites with nano-scale biochar obtained from olive waste, which is an easily accessible, renewable by-product. Full article
Show Figures

Figure 1

24 pages, 10416 KiB  
Article
Improved Mechanical Performance of Carbon–Kevlar Hybrid Composites with TiO2 Nanoparticle Reinforcement for Structural Applications
by Vignesh Nagarajan Jawahar, Rajesh Jesudoss Hynes Navasingh, Krzysztof Stebel, Radosław Jasiński and Adam Niesłony
J. Manuf. Mater. Process. 2025, 9(5), 140; https://doi.org/10.3390/jmmp9050140 - 24 Apr 2025
Viewed by 760
Abstract
Carbon–Kevlar hybrid composites are being increasingly recognized as suitable materials for aerospace, automotive, and construction applications due to their unique combination of strength, toughness, and safety. Prior to their use, extensive testing and validation are essential to ensure that these composites meet the [...] Read more.
Carbon–Kevlar hybrid composites are being increasingly recognized as suitable materials for aerospace, automotive, and construction applications due to their unique combination of strength, toughness, and safety. Prior to their use, extensive testing and validation are essential to ensure that these composites meet the specific safety and performance standards required by each industry. In this study, the mechanical performance and behavior of five different types of Carbon–Kevlar hybrid composites were investigated. In addition to microstructural investigations, mechanical tests were also carried out, including tensile, bending, impact, and micro-hardness tests. The investigated composites were Carbon–Kevlar hybrids without orientation, with a symmetrical orientation, and with the addition of TiO2 nanoparticles at weight percentages of 3%, 4%, and 5%. The results showed that the mechanical properties of these composites could be significantly influenced by different fiber orientations and the addition of TiO2 nanoparticles. In particular, the addition of TiO2 nanoparticles increased the tensile strength, hardness, toughness, and breaking strength. Of the composites tested, the composite reinforced with 5% TiO2 nanoparticles exhibited the highest mechanical performance, with a 79.8 Shore D hardness, 406 MPa tensile strength, 398 N/mm2 flexural strength, and 10.1 J impact energy. These results indicate that Carbon–Kevlar hybrid composites reinforced with TiO2 nanoparticles have excellent mechanical properties that make them highly suitable for armor plating, helmets, and vehicle armoring in particular and a wide range of other industrial applications in general. Full article
Show Figures

Figure 1

21 pages, 6182 KiB  
Article
Assessing the Compatibility of PAO and POE with Fluoroelastomer (FKM) for Potential EVs Application
by Bernardo Tormos, José M. Liñeira Del Río, Adbeel Balaguer and Enrique Giménez
Lubricants 2025, 13(4), 176; https://doi.org/10.3390/lubricants13040176 - 11 Apr 2025
Viewed by 861
Abstract
The accelerated growth of electric vehicle (EV) powertrains has prompted the development of specialized fluids that meet stringent thermal and electrical requirements for immersion cooling systems, including interactions with non-metallic components like fluoroelastomer (FKM). This research investigates the interactions between fluoroelastomer (FKM) and [...] Read more.
The accelerated growth of electric vehicle (EV) powertrains has prompted the development of specialized fluids that meet stringent thermal and electrical requirements for immersion cooling systems, including interactions with non-metallic components like fluoroelastomer (FKM). This research investigates the interactions between fluoroelastomer (FKM) and two potential base fluids—polyalphaolefin (PAO4) and a polyol ester (POE)—to assess their suitability for immersion cooling applications. Immersion tests, following an adapted ASTM D7216 standard, evidenced changes in FKM’s mass, Shore A hardness, and tensile strength. Furthermore, the physical, electrical, and thermal properties of the tested fluids were analyzed before and after immersion to determine whether contact with the FKM elastomer compromised their performance. The findings of this study reveal that the fluid exerts a greater influence on the elastomer than vice versa. This study bridges a knowledge gap in regards to EV fluid development and material science, contributing to the development of durable and efficient thermal management solutions. Full article
(This article belongs to the Special Issue Tribology of Electric Vehicles)
Show Figures

Figure 1

16 pages, 3075 KiB  
Article
Neural Network Optimization of Mechanical Properties of ABS-like Photopolymer Utilizing Stereolithography (SLA) 3D Printing
by Abdulkader Ali Abdulkader Kadauw
J. Manuf. Mater. Process. 2025, 9(4), 116; https://doi.org/10.3390/jmmp9040116 - 3 Apr 2025
Cited by 1 | Viewed by 766
Abstract
The optimization of mechanical properties in acrylonitrile butadiene styrene-like (ABS-like) photopolymer utilizing neural network techniques presents a promising methodology for enhancing the performance and strength of components fabricated through stereolithography (SLA) 3D printing. This approach uses machine learning algorithms to analyze and predict [...] Read more.
The optimization of mechanical properties in acrylonitrile butadiene styrene-like (ABS-like) photopolymer utilizing neural network techniques presents a promising methodology for enhancing the performance and strength of components fabricated through stereolithography (SLA) 3D printing. This approach uses machine learning algorithms to analyze and predict the relationships between various printing parameters and the resulting mechanical properties, thereby allowing the engineering of better materials specifically designed for targeted applications. Artificial neural networks (ANNs) can model complex, nonlinear relationships between process parameters and material properties better than traditional methods. This research constructed four ANN models to predict critical mechanical properties, such as tensile strength, yield strength, shore D hardness, and surface roughness, based on SLA 3D printer parameters. The parameters used were orientation, lifting speed, lifting distance, and exposure time. The constructed models showed good predictive capabilities, with correlation coefficients of 0.98798 for tensile strength, 0.9879 for yield strength, 0.9823 for Shore D hardness, and 0.98689 for surface roughness. These high correlation values revealed the effectiveness of ANNs in capturing the intricate dependencies within the SLA process. Also, multi-objective optimization was conducted using these models to find the SLA printer’s optimum parameter combination to achieve optimal mechanical properties. The optimization results showed that the best combination is Edge orientation, lifting speed of 90.6962 mm/min, lifting distance of 4.8483 mm, and exposure time of 4.8152 s, resulting in a tensile strength of 40.4479 MPa, yield strength of 32.2998 MPa, Shore D hardness of 66.4146, and Ra roughness of 0.8994. This study highlights the scientific novelty of applying ANN to SLA 3D printing, offering a robust framework for enhancing mechanical strength and dimensional accuracy, thus marking a significant benefit of using ANN tools rather than traditional methods. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Figure 1

18 pages, 8893 KiB  
Article
Optimization of Innovative Hybrid Polylactic Acid+ and Glass Fiber Composites: Mechanical, Physical, and Thermal Evaluation of Woven Glass Fiber Reinforcement in Fused Filament Fabrication 3D Printing
by Ardi Jati Nugroho Putro, Galang Bagaskara, Ibnu Adnan Prasetya, Jamasri, Ardi Wiranata, Yi-Chieh Wu and Muhammad Akhsin Muflikhun
J. Compos. Sci. 2025, 9(4), 164; https://doi.org/10.3390/jcs9040164 - 29 Mar 2025
Cited by 1 | Viewed by 891
Abstract
The growing demand for complex structures, energy absorption, and mechanically strong materials has led to the exploration of innovative composites. This study focuses on the manufacture, characterization, and evaluation of PLA+ reinforced with woven glass fiber. Using Fused Filament Fabrication (FFF) 3D Printer [...] Read more.
The growing demand for complex structures, energy absorption, and mechanically strong materials has led to the exploration of innovative composites. This study focuses on the manufacture, characterization, and evaluation of PLA+ reinforced with woven glass fiber. Using Fused Filament Fabrication (FFF) 3D Printer technology, the effects of adding woven glass fiber were examined through a tensile test with Digital Image Correlation (DIC)-induced, flexural, Charpy impact resistance, Shore D hardness, Differential Scanning Calorimetry (DSC) thermal tester, and SEM morphological tests. Results showed that adding four layers of glass fiber significantly improved mechanical properties: tensile strength increased by 85% to 95.44 MPa, flexural strength by 13% to 91.51 MPa, and impact resistance by 450% to 15.12 kJ/m2. However, a reduction in hardness and thermal resistance was noted due to chemical interactions. These findings suggest potential applications of PLA+ composites in high-strength products for vehicle bumpers in the automotive industry and shin pads in the sports industry. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

15 pages, 3198 KiB  
Article
ABS Nanocomposites for Advanced Technical and Biomedical Applications
by Lubomír Lapčík, Martin Vašina, Yousef Murtaja, Harun Sepetcioglu, Barbora Lapčíková, Martin Ovsík, Michal Staněk, İdris Karagöz and Apurva Shahaji Vadanagekar
Polymers 2025, 17(7), 909; https://doi.org/10.3390/polym17070909 - 27 Mar 2025
Viewed by 491
Abstract
This study investigated the mechanical, thermal, and morphological properties of acrylonitrile butadiene styrene (ABS)-based nanocomposites reinforced with different types and concentrations of nanofillers. The uniaxial tensile testing results indicated that Young’s modulus (E) generally decreased with increasing filler content, except at [...] Read more.
This study investigated the mechanical, thermal, and morphological properties of acrylonitrile butadiene styrene (ABS)-based nanocomposites reinforced with different types and concentrations of nanofillers. The uniaxial tensile testing results indicated that Young’s modulus (E) generally decreased with increasing filler content, except at 0.500 w.% filler concentration, where a slight increase in stiffness was observed. A statistically significant interaction between sample type and filler concentration was identified (p = 0.045). Fracture toughness measurements revealed a significant reduction in impact resistance at 1.000 w.% filler concentration, with values dropping by up to 67% compared with neat acrylonitrile butadiene styrene. Dynamic mechanical vibration testing confirmed a decrease in stiffness, as evidenced by a shift of the first resonance frequency (fR1) to lower values. Hardness measurements including indentation and Shore D hardness exhibited an increasing trend with rising filler concentration, with statistically significant differences observed at specific concentration levels (p < 0.05). Scanning electron microscopy analysis showed that nanofillers were well dispersed at lower concentrations, but agglomeration began above 0.500 w.%, resulting in void formation and a noticeable decline in mechanical properties. The results suggest that an optimal filler concentration range of 0.250–0.500 w.% offers an ideal balance between enhanced mechanical properties and material integrity. Full article
(This article belongs to the Special Issue Physicochemical Properties of Polymer Composites)
Show Figures

Figure 1

23 pages, 11856 KiB  
Article
Optimizing Process Parameters to Enhance Mechanical Properties of 3D-Printed Fiberglass-Reinforced ONYX Polymer
by Naumaan Shafique, Zarak Khan, Mushtaq Khan, Muhammad Younas and Mohd Shahneel Saharudin
J. Manuf. Mater. Process. 2025, 9(4), 108; https://doi.org/10.3390/jmmp9040108 - 26 Mar 2025
Viewed by 633
Abstract
Fused Deposition Modeling (FDM) is widely used for custom manufacturing but has limitations in strength for load-bearing applications. This study explores the optimization of mechanical properties for lightweight, cost-effective components using continuous fiber reinforcement. ONYX polymer, reinforced with continuous fiberglass, was printed using [...] Read more.
Fused Deposition Modeling (FDM) is widely used for custom manufacturing but has limitations in strength for load-bearing applications. This study explores the optimization of mechanical properties for lightweight, cost-effective components using continuous fiber reinforcement. ONYX polymer, reinforced with continuous fiberglass, was printed using the Markforged® Mark Two dual nozzle 3D printer. A Design of Experimentation (DoE) based on a Taguchi L9 array was used, varying fiberglass content (10%, 20%, 30%), infill densities (30%, 40%, 50%), and pattern types (hexagonal, rectangular, Triangular). The results show that increasing fiberglass content, infill density, and using a rectangular pattern enhanced mechanical properties, with a 30% fiberglass addition achieving a 4.743-fold increase in Izod impact energy. The highest mechanical performance was obtained with 30% fiberglass, 50% infill density, and a rectangular pattern, yielding an impact energy of 1576.778 J/m, compressive strength of 29.486 MPa, and Shore D hardness of 68.135 HD. Full article
Show Figures

Figure 1

19 pages, 4757 KiB  
Article
Enhancement of Mechanical Properties, Wettability, Roughness, and Thermal Insulation of Epoxy–Cement Composites for Building Construction
by Saif M. Jasim, Nadia A. Ali, Seenaa I. Hussein, Areej Al Bahir, Nashaat S. Abd EL-Gawaad, Ahmed Sedky, Abdelazim M. Mebed and Alaa M. Abd-Elnaiem
Buildings 2025, 15(4), 643; https://doi.org/10.3390/buildings15040643 - 19 Feb 2025
Cited by 1 | Viewed by 920
Abstract
In this study, epoxy–cement composites with different concentrations of cement nanofiller and ~67.5 nm in size (0, 5, 10, 15, and 20 wt%) were synthesized using the solution casting method. The epoxy–cement composites’ structural, mechanical, wettability, roughness, and thermal insulation were investigated. The [...] Read more.
In this study, epoxy–cement composites with different concentrations of cement nanofiller and ~67.5 nm in size (0, 5, 10, 15, and 20 wt%) were synthesized using the solution casting method. The epoxy–cement composites’ structural, mechanical, wettability, roughness, and thermal insulation were investigated. The synthesized epoxy resin is amorphous, whereas epoxy–cement composites are crystalline, and its crystallinity depends on the filler ratio. The incorporated cement hindered the spread of cracks and voids in the composite with few illuminated regions, and the epoxy/cement interface was identified. The Shore D hardness, impact strength, and flexural strength gradually increased to 92.3, 6.1 kJ/m2, and 40.6 MPa, respectively, with an increase in the cement ratio up to 20 wt%. In contrast, the incorporation of a cement ratio of up to 20 wt% reduced thermal conductivity from 0.22 to 0.16 W/m·K. These findings indicated that resin and cement nanoparticle fillers affected the chemical composition of epoxy, which resulted in high molecular compaction and thus strong mechanical resistance and enhanced thermal insulation. The roughness and water contact angle (WCA) of epoxy increased by increasing the cement nanofiller. In contrast, the surface energy (γ) of a solid surface decreased, indicating an inverse relation compared to the behavior of roughness and WCA. The reduction in γ and the creation of a rough surface with higher WCA can produce a suitable hydrophobic surface of lower wettability on the epoxy surface. Accordingly, the developed epoxy–cement composites benefit building construction requirements, among other engineering applications. Full article
Show Figures

Figure 1

13 pages, 3415 KiB  
Article
Effects of Infill Patterns on the Mechanical and Tribological Behaviour of 3D-Printed Polylactic Acid/Bamboo Biocomposites for Structural Applications
by Devarajan Balaji, Balasubramanian Arulmurugan and Venkateswaran Bhuvaneswari
Polymers 2025, 17(4), 448; https://doi.org/10.3390/polym17040448 - 8 Feb 2025
Viewed by 1097
Abstract
Composite materials are gaining attention owing to their exemplary characteristics and, if the materials are eco-friendly, they attract much more. One such composite of poly lactic acid (PLA) combined with bamboo fiber in the ratio of 80:20 is selected for this study. The [...] Read more.
Composite materials are gaining attention owing to their exemplary characteristics and, if the materials are eco-friendly, they attract much more. One such composite of poly lactic acid (PLA) combined with bamboo fiber in the ratio of 80:20 is selected for this study. The composites are manufactured using additive manufacturing, or the 3D-printing technique. In this article, a novel approach of infilling a honeycomb with around 12 infill patterns has been made, and all the 3D-printed specimens were tested for their mechanical and tribological properties. The 3D-printed composites were characterized using Fourier Transform InfraRed spectroscopy (FTIR) and X-Ray Diffraction (XRD) to evaluate their chemical composition and crystallite size (CS), respectively. Based on the results, the cross infill pattern outperforms irregular geometries like the Gyroid in terms of impact strength owing to its efficient stress distribution and superior interlayer bonding. By utilizing bidirectional reinforcement and distributing loads uniformly, the grid infill was able to attain the Shore D maximum hardness due to its strong 3D lattice structure; the Octet infill is very resistant to wear, which improves energy absorption and decreases material loss. Such honeycomb-filled 3D-printed composites can act as high-mechanical-strength components and find their applications in aerospace applications like drones and their allied structures. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop