Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = ship-induced sediment transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7380 KiB  
Article
Copper Pyrithione Induces Hepatopancreatic Apoptosis and Metabolic Disruption in Litopenaeus vannamei: Integrated Transcriptomic, Metabolomic, and Histopathological Analysis
by Jieyu Guo, Yang Yang, Siying Yu, Cairui Jiang, Xianbin Su, Yongfeng Zou and Hui Guo
Animals 2025, 15(14), 2134; https://doi.org/10.3390/ani15142134 - 18 Jul 2025
Viewed by 261
Abstract
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies [...] Read more.
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies heavily on its hepatopancreas for energy metabolism, detoxification, and immune responses. Due to their benthic habitat, these shrimps are highly vulnerable to contamination in sediment environments. This study investigated the toxicological response in the hepatopancreas of L. vannamei exposed to CuPT (128 μg/L) for 3 and 48 h. Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) fluorescence staining revealed increased apoptosis, deformation of hepatic tubule lumens, and the loss of stellate structures in the hepatopancreas after CuPT 48 h exposure. A large number of differentially expressed genes (DEGs) were identified by transcriptomics analysis at 3 and 48 h, respectively. Most of these DEGs were related to detoxification, glucose transport, and immunity. Metabolomic analysis identified numerous significantly different metabolites (SDMs) at both 3 and 48 h post-exposure, with most SDMs associated with energy metabolism, fatty acid metabolism, and related pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of metabolomics and transcriptome revealed that both DEGs and SDMs were enriched in arachidonic acid metabolism, fatty acid biosynthesis, and glycolysis/gluconeogenesis pathways at 3 h, while at 48 h they were enriched in the starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, and galactose metabolism pathways. These results suggested that CuPT disrupts the energy and lipid homeostasis of L. vannamei. This disruption compelled L. vannamei to allocate additional energy toward sustaining basal physiological functions and consequently caused the accumulation of large amounts of reactive oxygen species (ROS) in the body, leading to apoptosis and subsequent tissue damage, and ultimately suppressed the immune system and impaired the health of L. vannamei. Our study elucidates the molecular mechanisms of CuPT-induced metabolic disruption and immunotoxicity in L. vannamei through integrated multi-omics analyses, providing new insights for ecological risk assessment of this emerging antifoulant. Full article
(This article belongs to the Special Issue Ecology of Aquatic Crustaceans: Crabs, Shrimps and Lobsters)
Show Figures

Figure 1

21 pages, 3823 KiB  
Article
Ship-Forced Sediment Transport: A New Model for Propeller Jet Flow
by Carola Colangeli, Georgios Leftheriotis, Athanassios Dimas and Maurizio Brocchini
Water 2024, 16(12), 1647; https://doi.org/10.3390/w16121647 - 8 Jun 2024
Cited by 2 | Viewed by 1419
Abstract
A numerical model is presented for ship-induced sediment transport, focusing on the fundamental role of propeller jet flow. The new module has been implemented in the open-source numerical model FUNWAVE in order to reproduce the effect of the propeller on sediment transport. Numerical [...] Read more.
A numerical model is presented for ship-induced sediment transport, focusing on the fundamental role of propeller jet flow. The new module has been implemented in the open-source numerical model FUNWAVE in order to reproduce the effect of the propeller on sediment transport. Numerical simulations have been performed for both stationary and moving vessel cases, as well as for different values of propeller revolution speed. Numerical results are presented for the propeller-induced velocity field and the resulting morphological evolution of the seabed. Qualitative similarities are observed between the numerical results and literature experimental findings, showing the ability of the model to mimic complex morphodynamic processes induced by ship propellers. Compared to stationary vessel cases, smaller scour depths are generated in moving vessel cases. It is concluded that the effect of the propeller provides a major contribution to the mobilization and suspension of seabed sediment, and it should not be neglected in numerical models for ship-induced sediment transport. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

15 pages, 9135 KiB  
Article
Toward a Better Understanding of Sediment Dynamics as a Basis for Maintenance Dredging in Nagan Raya Port, Indonesia
by Muhammad Zikra, Shaskya Salsabila and Kriyo Sambodho
Fluids 2021, 6(11), 397; https://doi.org/10.3390/fluids6110397 - 3 Nov 2021
Cited by 9 | Viewed by 2635
Abstract
The Port of 2 × 110 MW Nagan Raya Coal Fired Steam Power Plant is one of the facilities constructed by the State Electricity Company in Aceh Province, Indonesia. During its operation, which began in 2013, the port has dealt with large amounts [...] Read more.
The Port of 2 × 110 MW Nagan Raya Coal Fired Steam Power Plant is one of the facilities constructed by the State Electricity Company in Aceh Province, Indonesia. During its operation, which began in 2013, the port has dealt with large amounts of sedimentation within the port and ship entrances. The goal of this study is to mitigate the sedimentation problem in the Nagan Raya port by evaluating the effect of maintenance dredging. Field measurements, and hydrodynamic and sediment transport modeling analysis, were conducted during this study. Evaluation of the wind data showed that the dominant wind direction is from south to west. Based on the analysis of the wave data, the dominant wave direction is from the south to the west. Therefore, the wave-induced currents in the surf zone were from south to north. Based on the analysis of longshore sediment transport, the supply of sediments to Nagan Raya port was estimated to be around 40,000–60,000 m3 per year. Results from the sediment model showed that sedimentation of up to 1 m was captured in areas of the inlet channel of Nagan Raya port. The use of a passing system for sand is one of the sedimentation management solutions proposed in this study. The dredged sediment material around the navigation channel was dumped in a dumping area in the middle of the sea at a depth of 11 m, with a distance of 1.5 km from the shoreline. To obtain a greater maximum result, the material disposal distance should be dumped further away, at least at a depth of 20 m or a distance of 20 miles from the coastline. Full article
(This article belongs to the Special Issue Environmental Hydraulics, Turbulence and Sediment Transport)
Show Figures

Figure 1

27 pages, 6449 KiB  
Article
Numerical Investigation of the Inland Transport Impact on the Bed Erosion and Transport of Suspended Sediment: Propulsive System and Confinement Effect
by Sami Kaidi, Hassan Smaoui and Philippe Sergent
J. Mar. Sci. Eng. 2021, 9(7), 746; https://doi.org/10.3390/jmse9070746 - 5 Jul 2021
Cited by 3 | Viewed by 2334
Abstract
For competitive reasons, inland ships as maritime ships are increasingly larger with powerful propulsive systems. The impact of this evolution on the environment is multiple. One of the major impacts is the erosion of the channel bed and the sediment suspension. This erosion [...] Read more.
For competitive reasons, inland ships as maritime ships are increasingly larger with powerful propulsive systems. The impact of this evolution on the environment is multiple. One of the major impacts is the erosion of the channel bed and the sediment suspension. This erosion phenomenon is essentially caused by the turbulent flow around the ship generated by its movement as well as its propulsive system. Hence, for a better prediction and understanding of this phenomenon, it is indispensable to simulate with great precision the flow around the ship hull and the induced shear stress at the bottom. Different ways were used in the past to estimate the shear stress at the waterway bottom. Some of these ways are empirical, analytical and numerical using shallow water models. In the present work to study the erosion phenomenon caused by the inland transport, a sedimentary transport model was developed and implemented in the Computational Fluid Dynamics (CFD) model (Fluent) as external code. The coupled model was firstly verified and validated using measurements. The validated model was subsequently used to assess the influence of several parameters: depth (h) to draught (T) ratio, ship advance ratio (J), ship speed and sediment size (d50). The first results show clearly that the coupled model behaves correctly and gives very satisfactory results. The impact of each parameter was compared and analyzed. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop