Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = semicontinuous system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8896 KiB  
Article
Synergistic Sequestration and Hydroxyapatite-Based Recovery of Phosphorus by the Coupling Process of CaCl2/Modified Oyster Shell and Circulating Fluidized Bed Reactor
by Xuejun Long, Nanshan Yang, Huiqi Wang, Jun Fang, Rui Wang, Zhenxing Zhong, Peng Yu, Xuelian Xu, Hao Huang, Jun Wan, Xiejuan Lu and Xiaohui Wu
Catalysts 2025, 15(8), 706; https://doi.org/10.3390/catal15080706 - 24 Jul 2025
Viewed by 308
Abstract
A novel modified oyster shell (MOS-800) was developed to enhance phosphorus sequestration and recovery from wastewater. Approximately 33.3% of phosphate was eliminated by the MOS-800, which also exhibited excellent pH regulation capabilities. In semicontinuous tests, a synergistic phosphorus separation was achieved through the [...] Read more.
A novel modified oyster shell (MOS-800) was developed to enhance phosphorus sequestration and recovery from wastewater. Approximately 33.3% of phosphate was eliminated by the MOS-800, which also exhibited excellent pH regulation capabilities. In semicontinuous tests, a synergistic phosphorus separation was achieved through the coupling process of CaCl2/MOS-800 and a circulating fluidized bed (CFB), resulting in an 86.5% phosphate separation. In continuous flow experiments, phosphorus elimination reached 98.2%. Material characterization revealed that hydroxyapatite (HAP) was the primary component of the crystallized products. Additionally, MOS-800 released 506.5–572.2 mg/g Ca2+ and 98.1 mg/g OH. A four-stage heterogeneous crystallization mechanism was proposed for the coupling process. In the first stage, Ca2+ quickly reacted with phosphate to form Ca-P ion clusters, etc. In the second stage, these clusters packed randomly to form spherical amorphous calcium phosphate (ACP). In the third stage, the ACP spheres were transformed and rearranged into sheet-like HAP crystallites, Finally, in the fourth stage, the HAP crystallites aggregated on the surface of crystal seeds, also with the addition of crystal seeds and undissolved MOS-800, potentially catalyzing the heterogeneous crystallization. These findings suggest that the CaCl2/MOS-800/CFB system is a promising technique for phosphate recovery from wastewater. Full article
Show Figures

Figure 1

17 pages, 676 KiB  
Review
The Strategies Microalgae Adopt to Counteract the Toxic Effect of Heavy Metals
by Xin-Yue Yang, Yu-Xin Wei, Yan-Qiu Su, Zhong-Wei Zhang, Xiao-Yan Tang, Yang-Er Chen, Ming Yuan and Shu Yuan
Microorganisms 2025, 13(5), 989; https://doi.org/10.3390/microorganisms13050989 - 25 Apr 2025
Viewed by 1031
Abstract
Besides biomass production, some microalgae have been used to treat wastewater contamination. However, in general, high concentrations of heavy metals significantly inhibit algal growth. We thus need to find ways to promote the resistance of microalgae to heavy metals, increase their growth rate [...] Read more.
Besides biomass production, some microalgae have been used to treat wastewater contamination. However, in general, high concentrations of heavy metals significantly inhibit algal growth. We thus need to find ways to promote the resistance of microalgae to heavy metals, increase their growth rate under stress, and achieve coupling of heavy metal removal and biomass production simultaneously. In this review, mechanisms for removal of heavy metals by microalgae are proposed. Effects of exogenous chemical additives (dissolved organic matters, formaldehyde, sulphate, phosphate, nitric oxide donors, etc.) on algal biosorption to heavy metals are summarized. Genetic manipulation and microalgal strain selection strategies are also introduced, especially for the acid-tolerant strains with high biosorption efficiencies to Cr(VI) and Cd2+ at low pH conditions. Recent advances in (semi)continuous heavy-metal-bioremediation and biomass-production coupled system with immobilized microalgae, as well as challenges and solutions to the commercialization and industrialization of the coupled system were discussed. Full article
(This article belongs to the Special Issue Role of Microbes in the Remediation of Pollutants in the Environment)
Show Figures

Figure 1

14 pages, 2166 KiB  
Article
Physiological Adaptation of Chromochloris zofingiensis in Three-Phased Cultivation Performed in a Pilot-Scale Photobioreactor
by Richard Bleisch, Yob Ihadjadene, Agnese Torrisi, Thomas Walther, Gunnar Mühlstädt, Juliane Steingröwer, Stefan Streif and Felix Krujatz
Life 2025, 15(4), 648; https://doi.org/10.3390/life15040648 - 14 Apr 2025
Viewed by 786
Abstract
Chromochloris zofingiensis is a green alga that serves as a valuable source of lipids, proteins, and carotenoids. Compared to well-studied microalgal carotenoid producers, C. zofingiensis offers several advantages, including high biomass, lipid and carotenoid productivity as well as less susceptibility to contaminations. C. [...] Read more.
Chromochloris zofingiensis is a green alga that serves as a valuable source of lipids, proteins, and carotenoids. Compared to well-studied microalgal carotenoid producers, C. zofingiensis offers several advantages, including high biomass, lipid and carotenoid productivity as well as less susceptibility to contaminations. C. zofingiensis can achieve growth rates up to four times higher than those of H. pluvialis under optimal phototrophic conditions. Although several studies have examined its cultivation and carotenogenesis under different tropic growth modes at laboratory scale, few have focused on pilot-scale systems. The goal of this study is to investigate the microalga’s physiological adaptation in a 200 L tubular photobioreactor during a three-phase semi-continuous cultivation strategy, particularly focusing on the changes in macromolecular and pigment composition. After an initial biomass accumulation phase, a two-phased stress phase was applied combining nutrient depletion (phase 1) and osmotic salt stress conditions (phase 2). Following this procedure, the cellular protein content dropped to 44.7% of its initial level, while the lipid content rose by up to 320%. Additionally, the astaxanthin concentration increased from 1.1 mg/gDW to 4.9 mg/gDW during the last osmotic stress phases, aligning with results from published laboratory-scale studies. Full article
(This article belongs to the Section Biochemistry, Biophysics and Computational Biology)
Show Figures

Figure 1

25 pages, 3293 KiB  
Article
Design of a Semi-Continuous Microwave System for Pretreatment of Microwave-Assisted Pyrolysis Using a Theoretical Method
by Paula Andrea Ramírez Cabrera, Alejandra Sophia Lozano Pérez and Carlos Alberto Guerrero Fajardo
Inventions 2025, 10(2), 24; https://doi.org/10.3390/inventions10020024 - 4 Mar 2025
Viewed by 1573
Abstract
This article provides an overview of various microwave-assisted techniques, such as microwave-assisted extraction (MAE), microwave-assisted organic synthesis (MAOS), microwave-assisted pyrolysis (MAP), microwave-assisted hydrothermal treatment (MAHT), microwave-assisted acid hydrolysis (MAAH), microwave-assisted organosolv (MAO), microwave-assisted alkaline hydrolysis (MAA), microwave-assisted enzymatic hydrolysis (MAEH), and microwave-assisted fermentation [...] Read more.
This article provides an overview of various microwave-assisted techniques, such as microwave-assisted extraction (MAE), microwave-assisted organic synthesis (MAOS), microwave-assisted pyrolysis (MAP), microwave-assisted hydrothermal treatment (MAHT), microwave-assisted acid hydrolysis (MAAH), microwave-assisted organosolv (MAO), microwave-assisted alkaline hydrolysis (MAA), microwave-assisted enzymatic hydrolysis (MAEH), and microwave-assisted fermentation (MAF). Microwave-assisted biomass pretreatment has emerged as a promising method to improve the efficiency of biomass conversion processes, in particular microwave-assisted pyrolysis (MAP). The focus is on microwave-assisted pyrolysis, detailing its key components, including microwave sources, applicators, feedstock characteristics, absorbers, collection systems, and reactor designs. Based on different studies reported in the literature and a mathematical model, a mechanical design of a microwave oven adapted for pyrolysis is proposed together with a computer-aided design and a finite element analysis. The semi-continuous system is designed for a 40 L capacity and a power of 800 W. The material with which the vessel was designed is suitable for the proposed process. The challenges, opportunities, and future directions of microwave-assisted technologies for the sustainable use of biomass resources are presented. Full article
Show Figures

Figure 1

22 pages, 4103 KiB  
Article
Seasonally Dependent Daytime and Nighttime Formation of Oxalic Acid Vapor and Particulate Oxalate in Tropical Coastal and Marine Atmospheres
by Le Yan, Yating Gao, Dihui Chen, Lei Sun, Yang Gao, Huiwang Gao and Xiaohong Yao
Atmosphere 2025, 16(1), 98; https://doi.org/10.3390/atmos16010098 - 17 Jan 2025
Cited by 1 | Viewed by 912
Abstract
Oxalic acid is the most abundant low-molecular-weight dicarboxylic acid in the atmosphere, and it plays a crucial role in the formation of new particles and cloud condensation nuclei. However, most observational studies have focused on particulate oxalate, leaving a significant knowledge gap on [...] Read more.
Oxalic acid is the most abundant low-molecular-weight dicarboxylic acid in the atmosphere, and it plays a crucial role in the formation of new particles and cloud condensation nuclei. However, most observational studies have focused on particulate oxalate, leaving a significant knowledge gap on oxalic acid vapor. This study investigated the concentrations and formation of oxalic acid vapor and oxalate in PM2.5 at a rural tropical coastal island site in south China across different seasons, based on semi-continuous measurements using an Ambient Ion Monitor-Ion Chromatograph (AIM-IC) system. We replaced the default 25 μL sampling loop on the AIM-IC with a 250 μL loop, improving the ability to distinguish the signal of oxalic acid vapor from noise. The data revealed clear seasonal patterns in the dependent daytime and nighttime formation of oxalic acid vapor, benefiting from high signal-to-noise ratios. Specifically, concentrations were 0.059 ± 0.15 μg m−3 in February and April 2023, exhibiting consistent diurnal variations similar to those of O3, likely driven by photochemical reactions. These values decreased to 0.021 ± 0.07 μg m−3 in November and December 2023, with higher nighttime concentrations likely related to dark chemistry processes, amplified by accumulation due to low mixing layer height. The concentrations of oxalate in PM2.5 were comparable to those of oxalic acid vapor, but exhibited (3–7)-day variations, superimposed on diurnal fluctuations to varying degrees. Additionally, thermodynamic equilibrium calculations were performed on the coastal data, and independent size distributions of particulate oxalate in the upwind marine atmosphere were analyzed to support the findings. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

21 pages, 891 KiB  
Review
Leveraging Microalgae to Achieve Zero Hunger: Enhancing Livestock Feed for Nutritional Security
by Leila Urrutia-Mazzuca, Marcia Mazzuca, María José Ibáñez-González and Tania Mazzuca-Sobczuk
Biomass 2025, 5(1), 4; https://doi.org/10.3390/biomass5010004 - 8 Jan 2025
Viewed by 1806
Abstract
Achieving “Zero Hunger” (SDG 2) requires overcoming complex challenges, especially in vulnerable communities in developing countries. Livestock plays a key role in food security, but limited resources threaten productivity, prompting interest in innovative solutions like microalgae supplementation in ruminant diets. Microalgae offer potential [...] Read more.
Achieving “Zero Hunger” (SDG 2) requires overcoming complex challenges, especially in vulnerable communities in developing countries. Livestock plays a key role in food security, but limited resources threaten productivity, prompting interest in innovative solutions like microalgae supplementation in ruminant diets. Microalgae offer potential benefits by enhancing productivity and nutrition while addressing local protein deficiencies. However, barriers such as economic costs, processing requirements, and resistance to changing traditional feeding practices present challenges. This review examines the feasibility of microalgae-based livestock feed as a sustainable strategy to improve food security, particularly in arid, climate-affected regions. Biomass yield estimates suggest that small-scale cultivation can meet livestock nutritional needs; for example, a 22-goat herd would require approximately 88 g of microalgae per day to enrich meat with polyunsaturated fatty acids. Semi-continuous production systems could enable smallholders to cultivate adequate biomass, using local agricultural resources efficiently. This approach supports food security, improves meat quality, and strengthens community resilience. Collaboration among researchers, extension services, and local farmers is essential to ensure the effective adoption of microalgae feed systems, contributing to a sustainable future for livestock production in vulnerable regions. Full article
Show Figures

Figure 1

14 pages, 2090 KiB  
Article
Influence of Adding Conductive Materials and Integrating Bio Electrochemical Systems on the Efficiency of Anaerobic Digestion
by Alberto Mur-Gorgas, Antonio V. García-Triviño, Raúl Mateos, Adrián Escapa and Antonio Morán
Appl. Sci. 2025, 15(1), 143; https://doi.org/10.3390/app15010143 - 27 Dec 2024
Viewed by 1151
Abstract
This study explores the impact of incorporating conductive materials and bioelectrochemical systems (BES) on the efficiency of anaerobic digestion (AD) of sewage sludge. The research consists of two phases: biodegradability tests using 3D-printed polylactic acid-based conductive fillers (PLA/Carbon Black and PLA/Graphene) and semi-continuous [...] Read more.
This study explores the impact of incorporating conductive materials and bioelectrochemical systems (BES) on the efficiency of anaerobic digestion (AD) of sewage sludge. The research consists of two phases: biodegradability tests using 3D-printed polylactic acid-based conductive fillers (PLA/Carbon Black and PLA/Graphene) and semi-continuous assays integrating an external BES into the AD process. Results from biodegradability tests indicate that conductive fillers enhance around 50% methane production during the start-up phase, with microbial communities adapting over time to reduce variability in methane yields. Moreover, as the experiment progressed, the methane yields of the digesters with and without fillers became equal. Semi-continuous experiments demonstrate that BES integration improves process stability and methane production by achieving a 5–10% improvement in the amount of methane in the biogas throughout the entire operation, even under high organic loads, by facilitating diverse electron transfer pathways. The challenges of BES operation highlight the need for optimized designs to ensure scalability. Microbial analyses reveal that BES application shifts methanogenic pathways, favouring acetoclastic methanogenesis. Overall, the findings underscore the potential of conductive materials and BES to improve biogas quality and production, contributing to sustainable wastewater management and renewable energy generation. Full article
(This article belongs to the Special Issue Production, Treatment, Utilization and Future Opportunities of Biogas)
Show Figures

Figure 1

21 pages, 2877 KiB  
Article
A Low-Cost IoT System Based on the ESP32 Microcontroller for Efficient Monitoring of a Pilot Anaerobic Biogas Reactor
by Sotirios D. Kalamaras, Maria-Athina Tsitsimpikou, Christos A. Tzenos, Antonios A. Lithourgidis, Dimitra S. Pitsikoglou and Thomas A. Kotsopoulos
Appl. Sci. 2025, 15(1), 34; https://doi.org/10.3390/app15010034 - 24 Dec 2024
Cited by 2 | Viewed by 3815
Abstract
A pilot anaerobic bioreactor requires near-daily monitoring and frequent maintenance. This study aimed to upgrade a pilot bioreactor into a low-cost IoT device via ESP32 microcontrollers. The methodology was based on remote data acquisition and online monitoring of various parameters towards assessing the [...] Read more.
A pilot anaerobic bioreactor requires near-daily monitoring and frequent maintenance. This study aimed to upgrade a pilot bioreactor into a low-cost IoT device via ESP32 microcontrollers. The methodology was based on remote data acquisition and online monitoring of various parameters towards assessing the anaerobic digestion performance. A semi-continuous tank bioreactor with a 60 L total volume was initially inoculated mainly with livestock manure and fed daily with a mixture of glucose, gelatin, and oleic acid, supplemented with a basic anaerobic medium. Under steady-state conditions, the organic loading rate was 2 g VS LR−1 d−1. Sensors for pH, temperature, REDOX potential, and ammonium concentration, along with devices measuring biogas volume and methane content, were integrated and validated against analytical methods. Biogas production was recorded accurately, enabling the early detection of production declines through ex-situ data analysis. Methane concentration variance was less than 6% compared to gas chromatography, while temperature and pH deviations were 0.15% and 1.67%, respectively. Ammonia ion measurements required frequent recalibration due to larger fluctuations. This IoT-enhanced system effectively demonstrated real-time monitoring of critical bioreactor parameters, with ESP32 enabling advanced control and monitoring capabilities. Full article
(This article belongs to the Special Issue Intelligent Control and Optimization in Energy System)
Show Figures

Figure 1

15 pages, 3259 KiB  
Article
Reconstruction of the Municipal Wastewater-Treatment Plant According to the Principles of Aerobic Granular Sludge Cultivation
by Miroslav Hutňan, Barbora Jankovičová, Lenka Jajcaiová, Mikhael Sammarah, Karol Kratochvíl and Nikola Šoltýsová
Processes 2024, 12(9), 1782; https://doi.org/10.3390/pr12091782 - 23 Aug 2024
Cited by 1 | Viewed by 1692
Abstract
The work presents the concept of aerobic granular sludge (AGS) and its potential for wastewater treatment. The work also evaluates the condition of the SBR (Sequencing Batch Reactor) type of municipal wastewater-treatment plant (WWTP) after its reconstruction into a system with AGS. The [...] Read more.
The work presents the concept of aerobic granular sludge (AGS) and its potential for wastewater treatment. The work also evaluates the condition of the SBR (Sequencing Batch Reactor) type of municipal wastewater-treatment plant (WWTP) after its reconstruction into a system with AGS. The WWTP parameters achieved before and after reconstruction were compared. Operational measurements of the process during the individual phases of the treatment process showed a balanced concentration profile of the monitored parameters in the span of the semicontinuous cycle. Laboratory tests showed that the sludge from the WWTP has nitrification and denitrification rates comparable to the rates achieved for flocculent sludge, and it is also comparable to the nitrification and denitrification rates of AGS with size of granules below 400 µm. Despite the fact that complete sludge granulation was not achieved, the results measured at the WWTP confirmed the advantages of the AGS concept. Neither anaerobic nor anoxic conditions were identified in the SBR during the individual phases of operation, yet high removal efficiencies of ammonia and nitrate nitrogen and orthophosphate phosphorus were achieved. The concentration of ammonia and nitrate nitrogen at the WWTP effluent was below 5 mg/L, and the concentration of phosphorus was below 0.5 mg/L. Full article
(This article belongs to the Special Issue Municipal Wastewater Treatment and Removal of Micropollutants)
Show Figures

Figure 1

16 pages, 332 KiB  
Article
Measure Attractors of Stochastic Fractional Lattice Systems
by Shudong Weng, Shaoyue Mi and Dingshi Li
Fractal Fract. 2024, 8(8), 448; https://doi.org/10.3390/fractalfract8080448 - 30 Jul 2024
Cited by 2 | Viewed by 932
Abstract
This paper seeks to establish the measure attractors in stochastic fractional lattice systems. First, the presence of these attractor measures is proven by the uniform estimates of the solution. Subsequently, the study also looks at the upper semicontinuous dependence of the measure attractors [...] Read more.
This paper seeks to establish the measure attractors in stochastic fractional lattice systems. First, the presence of these attractor measures is proven by the uniform estimates of the solution. Subsequently, the study also looks at the upper semicontinuous dependence of the measure attractors on the noise intensity as the latter goes to zero. The given asymptotic compactness for the family of probability measures occurring with the solution probability distributions is exhibited by a uniform prior estimation of the far-field solution values. Full article
(This article belongs to the Section Mathematical Physics)
16 pages, 1611 KiB  
Article
Co-Cultivation between the Microalga Tetradesmus obliquus and Filamentous Fungus Cunninghamella echinulata Improves Tertiary Treatment of Cheese Whey Effluent in Semicontinuous Mode
by Leandro Monteiro dos Santos, Joyce Camila Barbosa da Silva, Carlos Eduardo de Farias Silva, Brígida Maria Villar da Gama, Josimayra Almeida Medeiros, Giorgos Markou, Renata Maria Rosas Garcia Almeida and Ana Karla de Souza Abud
Processes 2024, 12(8), 1573; https://doi.org/10.3390/pr12081573 - 27 Jul 2024
Cited by 5 | Viewed by 1383
Abstract
Cheese whey (CW), a byproduct resulting from dairy processing, requires proper treatment and disposal. The use of microalgae during tertiary treatment emerges as a promising option due to its efficiency to remove chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) [...] Read more.
Cheese whey (CW), a byproduct resulting from dairy processing, requires proper treatment and disposal. The use of microalgae during tertiary treatment emerges as a promising option due to its efficiency to remove chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) from effluents obtained after secondary treatment processes. The present study was focused on treating CW effluent at two organic loads (C1 and C2—with different concentrations of COD, TN, and TP) (550–2200 mg·L−1 of COD, 14–56 mg·L−1 of TN, and 4.5–18 mg·L−1 of TP) using the microalga Tetradesmus obliquus alone (CM1 and CM2) and in a consortium with the fungus Cuninghamella echinulata (CMF1 and CMF2), evaluating the residual values of COD, TN, and TP and removal efficiency. The experiments were carried out in an open system with a volumetric replacement ratio (VRR) of 40 and 60%. The CM treatment showed residual values of COD in the range of 190–410 mg·L−1 (removal efficiency: 57–68%), TN in the range of 6–24 mg·L−1 (removal efficiency: 29–35%), and TP in the range of 0.90–3.0 mg·L−1 (removal efficiency: 65–68%), after 7 days of volumetric replacement time (VRT) in a semicontinuous mode. In contrast, the consortium (CMF) showed greater stability and efficiency in contaminant removal compared to the treatment system containing only the microalga, showing residual values of COD in the range of 61–226 mg·L−1 (removal efficiency: 75–77%), TN in the range of 1.8–9.5 mg·L−1 (removal efficiency: 70–74%), and TP in the range of 0.6–3.5 mg·L−1 (removal efficiency: 66–70%), applying a lower VRT of 3 days and reaching the legislation standard for discharge to CMF1 (VRR: 40 and 60%) and CMF2 (VRR: 40%). The cell dry weight of 290–850 mg·L−1 was obtained (microalga and microalga–fungus cultivation), which can be a valuable biomass for biotechnological applications. Finally, during microalga–fungus co-cultivation, there was greater system buffering (with less pH variation), ensuring a better system stability. Full article
(This article belongs to the Special Issue Advances in Bioremediation and Biosorption Processes)
Show Figures

Figure 1

20 pages, 2733 KiB  
Article
A Semi-Continuous Fermentation Process for Pulque Production Using Microfiltration-Sterilized Aguamiel and Aseptic Conditions to Standardize the Overall Quality of the Beverage
by Concepción Calderón-García, Paula Cecilia Guadarrama-Mendoza, Edith Ponce-Alquicira, Adelfo Escalante, Yesica Ruiz-Ramírez and Rogelio Valadez-Blanco
Fermentation 2024, 10(7), 342; https://doi.org/10.3390/fermentation10070342 - 28 Jun 2024
Cited by 1 | Viewed by 2365
Abstract
Despite the current appreciation of pulque as a probiotic fermented beverage, pulque has been also regarded as a poor-quality product, particularly due to the lack of sanitary control during its elaboration. To address this problem, a semi-continuous fermentation system was established, emulating the [...] Read more.
Despite the current appreciation of pulque as a probiotic fermented beverage, pulque has been also regarded as a poor-quality product, particularly due to the lack of sanitary control during its elaboration. To address this problem, a semi-continuous fermentation system was established, emulating the artisanal production process. Microfiltration-sterilized aguamiel was employed as the substrate, whereas a good-quality pulque was used as the fermentation inoculum. During the fermentation, the physicochemical, microbiological (lactic acid and Leuconostoc-type bacteria and yeasts) and sensory characteristics of the must were monitored. The isolated microorganisms were identified by molecular biology and MALDI-MS techniques. The sterilization of aguamiel by microfiltration did not negatively affect its physicochemical attributes. After 6–8 days of operation of the semi-continuous bioreactor, the fermentation reached a quasi-stationary state considering most of the parameters monitored during the experiment. The final fermentation product presented similar physicochemical, microbial and sensory properties to those of the pulque inoculum. The genera identified were Leuconostoc, Lentilactobacillus, Lactobacillus, Liquorilactobacillus, Fructilactobacillus and Saccharomyces. The strains Lentilactobacillus diolivorans and Liquorilactobacillus capillatus and uvarum have not been previously isolated from pulque. In conclusion, the fermentation system developed in this work was effective to standardize the quality of pulque while preserving the positive attributes of the artisanal process, thus harnessing the probiotic properties of pulque. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Graphical abstract

15 pages, 1911 KiB  
Article
Application of Aqueous Two-Phase Systems with Thermoseparating Polymers (EOPO) as a Method for Extractive Fermentation with Neochloris oleoabundans
by Ana Patricia Garza-Chapa, Carlos Iván Ávila-Velasco, José González-Valdez and Alma Gómez-Loredo
Fermentation 2024, 10(3), 130; https://doi.org/10.3390/fermentation10030130 - 25 Feb 2024
Cited by 2 | Viewed by 2229
Abstract
Extractive fermentation is an in situ method for the production and recovery of biomolecules of interest. Aqueous two-phase systems (ATPS) allow the product to be recovered in one phase of the system, reducing unit operations in the bioprocess. Thermosensitive polymers such as EOPOs [...] Read more.
Extractive fermentation is an in situ method for the production and recovery of biomolecules of interest. Aqueous two-phase systems (ATPS) allow the product to be recovered in one phase of the system, reducing unit operations in the bioprocess. Thermosensitive polymers such as EOPOs are an interesting alternative to be applied in ATPS. In this work, different EOPOs were tested in an extractive fermentation strategy with the green microalgae Neochloris oleoabundans to provide a basis for future implementations of these systems in microalgae bioprocesses. Extractive fermentations were carried out with two EOPOs of different molecular weights (3900 and 12,000 g/mol) at concentrations of 10% and 15% (w/v). The microalga was incubated axenically under two different sets of conditions for 21 and 45 days, respectively. Cell counts were performed, and cell growth curves were obtained. Additionally, a semi-continuous and batch extractive fermentation assay was performed. The extractive fermentation with EOPO showed lower cell growth and a longer adaptation time of the microalgae in the fermentation, and EPS production yields of up to 8–23 g/L were obtained. Extractive fermentation is an interesting method to be implemented in microalgae cultures; however, further conditions need to be explored to achieve an appropriate bioprocess. Full article
(This article belongs to the Special Issue Separation and Purification of Biosynthetic Products)
Show Figures

Figure 1

32 pages, 9326 KiB  
Article
Deep Learning Approach to Improve Spatial Resolution of GOES-17 Wildfire Boundaries Using VIIRS Satellite Data
by Mukul Badhan, Kasra Shamsaei, Hamed Ebrahimian, George Bebis, Neil P. Lareau and Eric Rowell
Remote Sens. 2024, 16(4), 715; https://doi.org/10.3390/rs16040715 - 18 Feb 2024
Cited by 9 | Viewed by 5175
Abstract
The rising severity and frequency of wildfires in recent years in the United States have raised numerous concerns regarding the improvement in wildfire emergency response management and decision-making systems, which require operational high temporal and spatial resolution monitoring capabilities. Satellites are one of [...] Read more.
The rising severity and frequency of wildfires in recent years in the United States have raised numerous concerns regarding the improvement in wildfire emergency response management and decision-making systems, which require operational high temporal and spatial resolution monitoring capabilities. Satellites are one of the tools that can be used for wildfire monitoring. However, none of the currently available satellite systems provide both high temporal and spatial resolution. For example, GOES-17 geostationary satellite fire products have high temporal (1–5 min) but low spatial resolution (≥2 km), and VIIRS polar orbiter satellite fire products have low temporal (~12 h) but high spatial resolution (375 m). This work aims to leverage currently available satellite data sources, such as GOES and VIIRS, along with deep learning (DL) advances to achieve an operational high-resolution, both spatially and temporarily, wildfire monitoring tool. Specifically, this study considers the problem of increasing the spatial resolution of high temporal but low spatial resolution GOES-17 data products using low temporal but high spatial resolution VIIRS data products. The main idea is using an Autoencoder DL model to learn how to map GOES-17 geostationary low spatial resolution satellite images to VIIRS polar orbiter high spatial resolution satellite images. In this context, several loss functions and DL architectures are implemented and tested to predict both the fire area and the corresponding brightness temperature. These models are trained and tested on wildfire sites from 2019 to 2021 in the western U.S. The results indicate that DL models can improve the spatial resolution of GOES-17 images, leading to images that mimic the spatial resolution of VIIRS images. Combined with GOES-17 higher temporal resolution, the DL model can provide high-resolution near-real-time wildfire monitoring capability as well as semi-continuous wildfire progression maps. Full article
(This article belongs to the Special Issue The Use of Remote Sensing Technology for Forest Fire)
Show Figures

Figure 1

15 pages, 2561 KiB  
Article
The Effect of Feeding Sequence on the Structure and Properties of the Ethylene/1-Octene Copolymer in the Semi-Continuous Polymerization Reaction System
by Qiqi He, Ruijun Zhang, Yuexin Hu, Junhua Li, Hongbo Yu, Yong Zheng and Jianhua Qian
Polymers 2024, 16(4), 526; https://doi.org/10.3390/polym16040526 - 15 Feb 2024
Cited by 2 | Viewed by 2006
Abstract
The performance of ethylene/1-octene copolymer primarily depends on the microstructure of the polymer chain. This study employed a new method to control the inter-distribution of hexyl chain branches directly on the backbone of the ethylene/1-octene copolymer. Three ethylene/1-octene copolymers with different inter-distributions of [...] Read more.
The performance of ethylene/1-octene copolymer primarily depends on the microstructure of the polymer chain. This study employed a new method to control the inter-distribution of hexyl chain branches directly on the backbone of the ethylene/1-octene copolymer. Three ethylene/1-octene copolymers with different inter-distributions of hexyl chain branches were synthesized using [Me2Si(C5Me4) (NtBu)] TiCl2 (Ti–CGC) by different feeding sequences in the semi-continuous polymerization reaction system. The three copolymers were named according to the feeding sequence of the materials: ethylene/1-octene/Ti–CGC (EOC), 1-octene/Ti–CGC/ethylene (OCE), and ethylene/Ti–CGC/1-octene (ECO), respectively. The structure and properties of the copolymers were characterized using HT-GPC, 13C-NMR, DSC, WAXD, DMA, MI, and Uniaxial Tension Test. The results showed that the feeding sequence greatly affected the comonomer distribution of the molecular chains, molecular weight, molecular weight distribution, and chemical composition of the copolymers, consequently influencing their thermal performance and mechanical properties. Thus, it is probable that one could obtain an ethylene/1-octene copolymer with designed properties by controlling the feeding sequence during the ethylene/1-octene semi-continuous copolymerization process. Full article
(This article belongs to the Special Issue Covalent Organic Polymers: Synthesis and Applications)
Show Figures

Graphical abstract

Back to TopTop