Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = semi-classical portraits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 667 KiB  
Article
Covariant Integral Quantization of the Semi-Discrete SO(3)-Hypercylinder
by Jean-Pierre Gazeau and Romain Murenzi
Symmetry 2023, 15(11), 2044; https://doi.org/10.3390/sym15112044 - 10 Nov 2023
Cited by 1 | Viewed by 1819
Abstract
Covariant integral quantization with rotational SO(3) symmetry is established for quantum motion on this group manifold. It can also be applied to Gabor signal analysis on this group. The corresponding phase space takes the form of a discrete-continuous hypercylinder. The [...] Read more.
Covariant integral quantization with rotational SO(3) symmetry is established for quantum motion on this group manifold. It can also be applied to Gabor signal analysis on this group. The corresponding phase space takes the form of a discrete-continuous hypercylinder. The central tool for implementing this procedure is the Weyl–Gabor operator, a non-unitary operator that operates on the Hilbert space of square-integrable functions on SO(3). This operator serves as the counterpart to the unitary Weyl or displacement operator used in constructing standard Schrödinger–Glauber–Sudarshan coherent states. We unveil a diverse range of properties associated with the quantizations and their corresponding semi-classical phase-space portraits, which are derived from different weight functions on the considered discrete-continuous hypercylinder. Certain classes of these weight functions lead to families of coherent states. Moreover, our approach allows us to define a Wigner distribution, satisfying the standard marginality conditions, along with its related Wigner transform. Full article
(This article belongs to the Special Issue Symmetry: Feature Papers 2023)
Show Figures

Figure A1

20 pages, 382 KiB  
Article
Quantum Models à la Gabor for the Space-Time Metric
by Gilles Cohen-Tannoudji, Jean-Pierre Gazeau, Célestin Habonimana and Juma Shabani
Entropy 2022, 24(6), 835; https://doi.org/10.3390/e24060835 - 16 Jun 2022
Cited by 3 | Viewed by 2091
Abstract
As an extension of Gabor signal processing, the covariant Weyl-Heisenberg integral quantization is implemented to transform functions on the eight-dimensional phase space x,k into Hilbertian operators. The x=xμ values are space-time variables, and the k=kμ [...] Read more.
As an extension of Gabor signal processing, the covariant Weyl-Heisenberg integral quantization is implemented to transform functions on the eight-dimensional phase space x,k into Hilbertian operators. The x=xμ values are space-time variables, and the k=kμ values are their conjugate frequency-wave vector variables. The procedure is first applied to the variables x,k and produces essentially canonically conjugate self-adjoint operators. It is next applied to the metric field gμν(x) of general relativity and yields regularized semi-classical phase space portraits gˇμν(x). The latter give rise to modified tensor energy density. Examples are given with the uniformly accelerated reference system and the Schwarzschild metric. Interesting probabilistic aspects are discussed. Full article
(This article belongs to the Special Issue Quantum Structures and Logics)
26 pages, 681 KiB  
Article
Quantum Mixmaster as a Model of the Primordial Universe
by Hervé Bergeron, Ewa Czuchry, Jean Pierre Gazeau and Przemysław Małkiewicz
Universe 2020, 6(1), 7; https://doi.org/10.3390/universe6010007 - 31 Dec 2019
Cited by 18 | Viewed by 3107
Abstract
The Mixmaster solution to Einstein field equations was examined by C. Misner in an effort to better understand the dynamics of the early universe. We highlight the importance of the quantum version of this model for the early universe. This quantum version and [...] Read more.
The Mixmaster solution to Einstein field equations was examined by C. Misner in an effort to better understand the dynamics of the early universe. We highlight the importance of the quantum version of this model for the early universe. This quantum version and its semi-classical portraits are yielded through affine and standard coherent state quantizations and more generally affine and Weyl–Heisenberg covariant integral quantizations. The adiabatic and vibronic approximations widely used in molecular physics can be employed to qualitatively study the dynamics of the model on both quantum and semi-classical levels. Moreover, the semi-classical approach with the exact anisotropy potential can be effective in the numerical integration of some solutions. Some promising physical features such as the singularity resolution, smooth bouncing, the excitation of anisotropic oscillations and a substantial amount of post-bounce inflation as the backreaction to the latter are pointed out. Finally, a realistic cosmological scenario based on the quantum mixmaster model, which includes the formation and evolution of local structures is outlined. Full article
(This article belongs to the Special Issue Quantum Models for Cosmology)
Show Figures

Figure 1

22 pages, 535 KiB  
Article
Geometric Model of Black Hole Quantum N-portrait, Extradimensions and Thermodynamics
by Antonia M. Frassino, Sven Köppel and Piero Nicolini
Entropy 2016, 18(5), 181; https://doi.org/10.3390/e18050181 - 14 May 2016
Cited by 25 | Viewed by 6915
Abstract
Recently a short scale modified black hole metric, known as holographic metric, has been proposed in order to capture the self-complete character of gravity. In this paper we show that such a metric can reproduce some geometric features expected from the quantum N [...] Read more.
Recently a short scale modified black hole metric, known as holographic metric, has been proposed in order to capture the self-complete character of gravity. In this paper we show that such a metric can reproduce some geometric features expected from the quantum N-portrait beyond the semi-classical limit. We show that for a generic N this corresponds to having an effective energy momentum tensor in Einstein equations or, equivalently, non-local terms in the gravity action. We also consider the higher dimensional extension of the metric and the case of an AdS cosmological term. We provide a detailed thermodynamic analysis of both cases, with particular reference to the repercussions on the Hawking-Page phase transition. Full article
(This article belongs to the Special Issue Entropy in Quantum Gravity and Quantum Cosmology)
Show Figures

Figure 1

Back to TopTop