Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = semi-arid agroecosystem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6426 KB  
Article
Predicting Soil Fertility in Semi-Arid Agroecosystems Using Interpretable Machine Learning Models: A Sustainable Approach for Data-Sparse Regions
by Nurullah Acir
Sustainability 2025, 17(16), 7547; https://doi.org/10.3390/su17167547 - 21 Aug 2025
Viewed by 281
Abstract
The accurate assessment of soil fertility is critical for guiding nutrient management and promoting sustainable agriculture in semi-arid agroecosystems. In this study, a machine learning-based Soil Fertility Index (SFI) model was developed using regularized regression techniques to evaluate fertility across a dryland maize-growing [...] Read more.
The accurate assessment of soil fertility is critical for guiding nutrient management and promoting sustainable agriculture in semi-arid agroecosystems. In this study, a machine learning-based Soil Fertility Index (SFI) model was developed using regularized regression techniques to evaluate fertility across a dryland maize-growing region in southeastern Türkiye. A total of 64 composite soil samples were collected from the Batman Plain, characterized by alkaline and salinity-prone conditions. Five soil chemical indicators, electrical conductivity (EC), pH, organic matter (OM), zinc (Zn), and iron (Fe), were selected for SFI estimation using a standardized rating approach. The dataset was randomly split into training (80%) and test (20%) subsets to calibrate and validate the models. Ridge, Lasso, and Elastic Net regression models were employed to predict SFI and assess variable importance. Among these, the Lasso model achieved the highest predictive accuracy on test data (R2 = 0.746, RMSE = 0.060), retaining only EC and Zn as significant predictors. Ridge and Elastic Net captured OM and pH, though their contributions were minimal (|β| < 0.01). Spatial predictions showed moderate alignment with observed SFI values (range: 0.48–0.76), but all models underestimated high-fertility zones (>0.69), likely due to coefficient shrinkage. Despite its simplicity, the Lasso model offered superior interpretability and spatial resolution. The results reveal the potential of interpretable machine learning for supporting sustainable, site-specific fertility assessment and informed nutrient management in data-scarce and environmentally vulnerable regions. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

15 pages, 4270 KB  
Article
Subsoiling-Induced Shifts in Nitrogen Dynamics and Microbial Community Structure in Semi-Arid Rainfed Maize Agroecosystems
by Jian Gu, Hao Sun, Xu Zhou, Yongqi Liu, Mingwei Zhou, Ningning Ma, Guanghua Yin and Shijun Sun
Microorganisms 2025, 13(8), 1897; https://doi.org/10.3390/microorganisms13081897 - 14 Aug 2025
Viewed by 297
Abstract
Global agricultural intensification has exacerbated soil compaction and nitrogen (N) inefficiency, thereby threatening sustainable crop production. Sub-soiling, a tillage technique that fractures subsurface layers while preserving surface structure, offers potential solutions by modifying soil physical properties and enhancing microbial-mediated N cycling. This study [...] Read more.
Global agricultural intensification has exacerbated soil compaction and nitrogen (N) inefficiency, thereby threatening sustainable crop production. Sub-soiling, a tillage technique that fractures subsurface layers while preserving surface structure, offers potential solutions by modifying soil physical properties and enhancing microbial-mediated N cycling. This study investigated the effects of subsoiling depth (0, 20, and 40 cm) on soil microbial communities and N transformations in a semi-arid maize system in China. The results demonstrated that subsoiling to a depth of 40 cm (D2) significantly enhanced the retention of nitrate-N and ammonium-N, which correlated with improved soil porosity and microbial activity. High-throughput 16S rDNA sequencing revealed subsoiling depth-driven reorganization of microbial communities, with D2 increasing the abundance of Proteobacteria (+11%) and ammonia-oxidizing archaea (Nitrososphaeraceae, +19.9%) while suppressing denitrifiers (nosZ gene: −41.4%). Co-occurrence networks indicated greater complexity in microbial interactions under subsoiling, driven by altered aeration and carbon redistribution. Functional gene analysis highlighted a shift from denitrification to nitrification-mineralization coupling, with D2 boosting maize yield by 9.8%. These findings elucidate how subsoiling depth modulates microbiome assembly to enhance N retention, providing a mechanistic basis for optimizing tillage practices in semi-arid agroecosystems. Full article
(This article belongs to the Special Issue Microbial Communities and Nitrogen Cycling)
Show Figures

Figure 1

22 pages, 6844 KB  
Article
Legume Green Manure Further Improves the Effects of Fertilization on the Long-Term Yield and Water and Nitrogen Utilization of Winter Wheat in Rainfed Agriculture
by Xiushuang Li, Juan Chen, Jianglan Shi and Xiaohong Tian
Plants 2025, 14(16), 2476; https://doi.org/10.3390/plants14162476 - 9 Aug 2025
Viewed by 418
Abstract
Context: To revive the practice of planting legume green manure (GM) in the fallow period in rainfed agricultural areas, it is essential to demonstrate the benefits of this practice on the yields and water use efficiency (WUE) of subsequent crops, especially when integrating [...] Read more.
Context: To revive the practice of planting legume green manure (GM) in the fallow period in rainfed agricultural areas, it is essential to demonstrate the benefits of this practice on the yields and water use efficiency (WUE) of subsequent crops, especially when integrating with optimized water and fertilizer management. Objectives: We conducted a field experiment to determine the positive effects of planting legume GM in the summer fallow on the yield, WUE, and nitrogen uptake efficiency (NupE) of subsequent winter wheat, which was grown with plastic film mulching and integrated fertilization in the Loess Plateau of China. Methods: A split-plot-designed experiment was arranged with two main treatments, namely (1) wheat planting followed by GM planting in the summer fallow (GM) and (2) conventional wheat monoculture followed by bare land summer fallow (BL), and three sub-treatments: (1) control treatment without any chemical fertilizer (Ct), (2) application of chemical N, P, and K as basal fertilizer (B), and (3) application of basal fertilizer plus wheat straw return (BS). Results: In the initial two years, even in a dry year, GM did not decrease the soil water content and storage (0–200 cm layer) during the subsequent winter wheat season, relative to BL. But in the third and fourth years, GM increased the grain yield of winter wheat by 3.2% and 3.8%, respectively. B and BS increased the grain yield of winter wheat by 14.4% and 22.2%, respectively, during the third experimental year, and by 12.7% and 19.4% during the fourth experimental year, primarily through increasing the population density of winter wheat. The increase in the grain yield contributed to a higher WUE of winter wheat. In the third year, GM increased the water consumption (WC) and WUE of wheat by 2.4% and 1.7%, respectively, though they were far lower than B (8.3% and 5.6%) and BS (10.4% and 10.7%). B and BS resulted in a higher yield and N nutrition than GM alone, but GM combined with B and BS resulted in the highest yield and N nutrition, thus greatly decreasing the NupE and increasing N productivity. Conclusions: Planting legume GM in the fallow can further increase the long-term yield, WUE, and N utilization of winter wheat when integrated with chemical fertilization and wheat straw return in rainfed agriculture. Implications: Our study yields new insights into the agronomic benefits of legume GM application in semi-arid or analogous rainfed agroecosystems and underscores the critical role of water conservation in ensuring dryland agricultural production, particularly in regions undergoing optimization of fertilization. Full article
Show Figures

Figure 1

18 pages, 1289 KB  
Article
Harnessing Extremophile Bacillus spp. for Biocontrol of Fusarium solani in Phaseolus vulgaris L. Agroecosystems
by Tofick B. Wekesa, Justus M. Onguso, Damaris Barminga and Ndinda Kavesu
Bacteria 2025, 4(3), 39; https://doi.org/10.3390/bacteria4030039 - 1 Aug 2025
Viewed by 275
Abstract
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been [...] Read more.
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been explored, most microbial agents are sourced from mesophilic environments and show limited effectiveness under abiotic stress. Here, we report the isolation and characterization of extremophilic Bacillus spp. from the hypersaline Lake Bogoria, Kenya, and their biocontrol potential against F. solani. From 30 isolates obtained via serial dilution, 9 exhibited antagonistic activity in vitro, with mycelial inhibition ranging from 1.07–1.93 cm 16S rRNA sequencing revealed taxonomic diversity within the Bacillus genus, including unique extremotolerant strains. Molecular screening identified genes associated with the biosynthesis of antifungal metabolites such as 2,4-diacetylphloroglucinol, pyrrolnitrin, and hydrogen cyanide. Enzyme assays confirmed substantial production of chitinase (1.33–3160 U/mL) and chitosanase (10.62–28.33 mm), supporting a cell wall-targeted antagonism mechanism. In planta assays with the lead isolate (B7) significantly reduced disease incidence (8–35%) and wilt severity (1–5 affected plants), while enhancing root colonization under pathogen pressure. These findings demonstrate that extremophile-derived Bacillus spp. possess robust antifungal traits and highlight their potential as climate-resilient biocontrol agents for sustainable bean production in arid and semi-arid agroecosystems. Full article
Show Figures

Figure 1

17 pages, 3112 KB  
Article
Impacts of Conservation Tillage on Soil Organic Carbon Mineralization in Eastern Inner Mongolia
by Boyu Liu, Jianquan Wang, Dian Jin and Hailin Zhang
Agronomy 2025, 15(8), 1847; https://doi.org/10.3390/agronomy15081847 - 30 Jul 2025
Viewed by 329
Abstract
Soil organic carbon (SOC) mineralization plays the critical role of regulating carbon sequestration potential. This process is strongly influenced by agricultural practices, particularly tillage regimes and straw management. However, the complex interactions between tillage methods, straw types, and application rates in terms of [...] Read more.
Soil organic carbon (SOC) mineralization plays the critical role of regulating carbon sequestration potential. This process is strongly influenced by agricultural practices, particularly tillage regimes and straw management. However, the complex interactions between tillage methods, straw types, and application rates in terms of SOC dynamics, especially in semi-arid agroecosystems like eastern Inner Mongolia, remain poorly understood. In this study, we assessed the combined effects of no tillage (NT) vs. rotary tillage (RT), three straw types (maize/MS, wheat/WS, and oilseed rape/OS), and three application rates (0.4%/low, 0.8%/medium, and 1.2%/high) on SOC concentration and mineralization using controlled laboratory incubation with soils from long-term plots. The key findings revealed that NT significantly increased the SOC concentration in the topsoil (0–20 cm) by an average of 14.5% compared to that in the RT. Notably, combining NT with medium-rate wheat straw (0.8%) resulted in the achievement of the highest SOC accumulation (28.70 g/kg). SOC mineralization increased with straw inputs, exhibiting significant straw type × rate interactions. Oilseed rape straw showed the highest specific mineralization rate (33.9%) at low input, while maize straw mineralized fastest under high input with RT. Therefore, our results demonstrate that combining NT with either 0.8% wheat straw or 1.2% maize straw represents an optimal application strategy, as the SOC concentration is enhanced by 12–18% for effective carbon sequestration in this water-limited semi-arid region. Therefore, optimizing SOC sequestration requires the integration of appropriate crop residue application rates and tillage methods tailored to different cropping systems. Full article
Show Figures

Figure 1

28 pages, 3748 KB  
Article
Carob–Thyme Intercropping Systems Can Improve Yield Efficiency and Environmental Footprint Compared to Conservation Tillage
by Sofia Matsi, Dimitrios Sarris and Vassilis Litskas
Agronomy 2025, 15(7), 1560; https://doi.org/10.3390/agronomy15071560 - 26 Jun 2025
Viewed by 406
Abstract
Living mulch intercropping systems are considered as nature-based solutions with a low environmental footprint for managing weeds, improving biodiversity and agroecosystem sustainability. In drylands, however, they may increase intra/inter-specific competition for water, reducing crop productivity. We tested conservation tillage (TLG) carob plots with [...] Read more.
Living mulch intercropping systems are considered as nature-based solutions with a low environmental footprint for managing weeds, improving biodiversity and agroecosystem sustainability. In drylands, however, they may increase intra/inter-specific competition for water, reducing crop productivity. We tested conservation tillage (TLG) carob plots with and without irrigation (TLGirr; TLGdry) vs. rainfed intercropping systems of carob and (i) thyme (Thymbra capitata; T-System) or (ii) clover (Trifolium squarrosum; C-System), strategically planted on the south (sun)-exposed soil side (SES) of carobs, to reduce soil temperature/evaporation. Carob water relations, productivity and environmental footprints were examined for three years under semi-arid, low weed-competition (Skarinou-SKR) and arid high weed-competition (Vrysoules-VRY) conditions in Cyprus. Carob yield efficiency (kg/m3) in SKR, was >27% higher for the T-System (p < 0.05; SES cover ca. 85%; year-3), matching a higher leaf water content (p < 0.001) compared to TLGdry. The T-System reached 28% and 56% of TLGirr yields during very dry and normal rainfall years; TLGdry yields approached zero. For VRY, no negative impacts on carob leaf water, at 25% SES cover, were found. SKR’s C-System improved leaf water content (p < 0.05) for only one year. The T-System also outperformed TLGirr and TLGdry in terms of reducing irrigation needs and energy consumption, breaking new grounds for dryland agroforestry. Full article
Show Figures

Figure 1

30 pages, 4591 KB  
Article
Evolution of the Soil Bacterial Community as a Function of Crop Management: A Metagenomic Study in Orange Tree (Citrus sinensis) Plantations
by Carlos Giménez-Valero, Alejandro Andy Maciá-Vázquez, Dámaris Núñez-Gómez, Agustín Conesa, Vicente Lidón and Pablo Melgarejo
Plants 2025, 14(12), 1781; https://doi.org/10.3390/plants14121781 - 11 Jun 2025
Viewed by 507
Abstract
Soil management significantly influences the structure and diversity of soil bacterial communities, affecting biodiversity and ecosystem functions. In semi-arid regions, water efficiency strategies like anti-weed netting are implemented, but their impact on soil microbial communities remains underexplored. This study evaluates the temporal evolution [...] Read more.
Soil management significantly influences the structure and diversity of soil bacterial communities, affecting biodiversity and ecosystem functions. In semi-arid regions, water efficiency strategies like anti-weed netting are implemented, but their impact on soil microbial communities remains underexplored. This study evaluates the temporal evolution of soil bacterial communities in orange tree (Citrus sinensis (L.) Osbeck) plantations under two conditions: with and without anti-weed netting. Soil samples were collected at three time points over a period of 18 months since the establishment of the crop and analyzed using high-throughput 16S rRNA sequencing, assessing alpha and beta diversity, taxonomic composition, and functional pathways via KEGG analysis. The results indicate that weed control netting contributes to stabilizing bacterial diversity over time and increases the relative abundance of dominant phyla such as Planctomycetota, Proteobacteria, Bacteroidota, and Acidobacteriota. Functional predictions revealed significant differences in metabolic pathways, including those associated with nitrogen fixation and organic matter degradation. These findings suggest that anti-weed netting not only influences the taxonomic composition of soil bacterial communities but also modulates their functional potential, with implications for sustainable agriculture in semi-arid environments. This study provides new insights into the interaction between soil management and soil bacterial communities, offering valuable information for optimizing agricultural practices and soil conservation strategies. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

20 pages, 2608 KB  
Article
Smallholder Farmers’ Perceptions of Climate Variability and Land-Use Changes in Semiarid Gwayi Catchment Agroecosystems
by Simon Peter Musinguzi, Bright Chisadza, Onalenna Gwate, Nkululeko Mpofu, Alban Mugoti, Bienvenu Akowedaho Dagoudo and Margaret Macherera
Earth 2025, 6(2), 45; https://doi.org/10.3390/earth6020045 - 20 May 2025
Viewed by 2185
Abstract
Climate variability and land-use changes are critical challenges impacting agriculture globally, with Zimbabwe’s Gwayi catchment area experiencing noticeable effects. This study investigated how smallholder farmers in the region perceive these changes and their influence on agricultural productivity and livelihoods. The research addresses the [...] Read more.
Climate variability and land-use changes are critical challenges impacting agriculture globally, with Zimbabwe’s Gwayi catchment area experiencing noticeable effects. This study investigated how smallholder farmers in the region perceive these changes and their influence on agricultural productivity and livelihoods. The research addresses the gap in understanding local farmer experiences with climate change and land-use modifications in the context of food security. A cross-sectional survey (n = 483) was conducted using self-administered questionnaires to capture demographic information, perceptions of climate variability, land-use changes, and their impacts on agriculture. The results indicate a trend of increasing droughts, dry spells, and heatwaves, alongside altered rainfall patterns and rising temperatures, corroborating the observed climate data. Environmental degradation, including deforestation, gully formation, and land expansion, exacerbates these changes. Consequently, farmers reported substantial reductions in crop yields, with 84.05% experiencing significant-to-very negative impacts, alongside declining livestock health (32.51% reporting very negative impacts), increased water scarcity (43.3% reporting drying water sources), and more frequent disease outbreaks. These challenges collectively contributed to heightened food insecurity, with 74.12% of households reporting negative impacts on their food supply. The study underscores the synergistic impacts of climate variability and land-use changes, highlighting the urgent need for climate-smart agricultural practices and sustainable land management to enhance resilience and ensure long-term food security for smallholder farmers in the Gwayi catchment. Full article
Show Figures

Figure 1

22 pages, 2821 KB  
Article
Ecosystem Service Values and Wheat Agroecosystem Management Types in a Semi-Arid Region, Iran
by Saeed Sharafi, Zahra Marzban and Deirdre Dragovich
Land 2025, 14(4), 865; https://doi.org/10.3390/land14040865 - 15 Apr 2025
Viewed by 469
Abstract
Global demand for ecosystem services like food and clean water is increasing, and it is crucial to economically value these services for the purposes of environmental conservation, land-use planning, and the implementation of green taxes. Focusing on a monoculture wheat agroecosystem, the economic [...] Read more.
Global demand for ecosystem services like food and clean water is increasing, and it is crucial to economically value these services for the purposes of environmental conservation, land-use planning, and the implementation of green taxes. Focusing on a monoculture wheat agroecosystem, the economic value of ecosystem services and environmental damage from different farm management types is here compared with natural ecosystems in a semi-arid region in Iran during the 2019–2020 agricultural year. Using field survey data collected from 203 wheat farms with varying management practices, we estimated the economic value of six ecosystem services, along with three environmental damages. The net value of provisioning/regulating services less environmental disservices in wheat agroecosystems was highest for farms with a conservation management system, followed (in rank order) by intensive, traditional, organic, and industrial management types. Wheat agroecosystems recorded net values of 41.94% to 66.92% below those of natural ecosystems in the region. The findings show that converting natural ecosystems into wheat agroecosystems increases the value of provisioning services (food and forage) but also substantially increases environmental costs. These costs rose linearly with the value of increases in provisioning services. Full article
Show Figures

Figure 1

17 pages, 1809 KB  
Article
The Impact of Wheat Growth Stages on Soil Microbial Communities in a Rain-Fed Agroecosystem
by Yosef Steinberger, May Levi, Itaii Applebaum, Chen Sherman, Tirza Doniger and Adrian Unc
Microorganisms 2025, 13(4), 838; https://doi.org/10.3390/microorganisms13040838 - 7 Apr 2025
Viewed by 557
Abstract
Wheat is the largest terrestrial agricultural crop globally. This study was conducted to determine the soil microbial biomass, soil CO2 evolution, and physiological profile in the rhizosphere of the winter wheat rain-fed Triticum aestivum along the development stages in a rain-fed semi-arid [...] Read more.
Wheat is the largest terrestrial agricultural crop globally. This study was conducted to determine the soil microbial biomass, soil CO2 evolution, and physiological profile in the rhizosphere of the winter wheat rain-fed Triticum aestivum along the development stages in a rain-fed semi-arid agro-ecosystem. The data show that a significant, over 100-fold increase in the utilization of four substrate groups (benzoic acid, amino acid, carbohydrates, and carboxylic acid) occurred in the wheat soil rhizosphere along the wheat growth phenology. After the stubble field stage, there was a notable decrease in the utilization of all four substrates. The occurrence of each substrate in the soil aligns with the below-ground rhythm of wheat plant biomass growth. The abundance of fine roots, categorizing wheat plant roots, in the soil at maturity and the stubble field stage may explain the heightened activity and diversity of copiotroph bacteria. This association suggests a potential link between the richness of fine roots and the increased activity and diversity of copiotroph bacteria in the soil. The findings clarify the impact of constraining abiotic factors, coupled with the phenological influences of wheat plants, and their combined effects on substrate utilization by microbial communities in a rain-fed Triticum aestivum wheat field. Full article
(This article belongs to the Collection Feature Papers in Environmental Microbiology)
Show Figures

Figure 1

23 pages, 5520 KB  
Article
Multivariate Insight into Soil Organic Matter Dynamics in Subarctic Abandoned Farmland by the Chronosequence Approach
by Timur Nizamutdinov, Sizhong Yang, Xiaodong Wu, Vladislav Gurzhiy and Evgeny Abakumov
Agronomy 2025, 15(4), 893; https://doi.org/10.3390/agronomy15040893 - 3 Apr 2025
Viewed by 664
Abstract
Agricultural land abandonment is a widespread phenomenon found in many regions of the world. There are many studies on post-agricultural changes in temperate, arid, semi-arid regions, etc., but studies of such soils in boreal or Arctic conditions are rare. Our study aims to [...] Read more.
Agricultural land abandonment is a widespread phenomenon found in many regions of the world. There are many studies on post-agricultural changes in temperate, arid, semi-arid regions, etc., but studies of such soils in boreal or Arctic conditions are rare. Our study aims to fill the gaps in research on the processes of post-agricultural soil transformation, with a focus on the harsh climatic conditions of the Arctic and Subarctic regions. Parameters of soil organic matter (SOM) are largely reflected in the quality of soil, and this study investigates the dynamics of SOM properties in Subarctic agricultural soils in process of post-agrogenic transformation and long-term fertilization. Using a chronosequence approach (0–25 years of abandonment) and a reference site with over 90 years of fertilization, we performed elemental (CHN-O) analysis, solid-state 13C NMR spectroscopy of SOM, PXRD of soil and parent material, and multivariate statistical analysis to identify the connections between SOM composition and other soil properties. The results revealed transient increases in soil organic carbon (SOC) during early abandonment (5–10 years; 3.75–4.03%), followed by significant declines after 25 years (2.15–2.27%), driven by mineralization in quartz-dominated soils lacking reactive minerals for organo-mineral stabilization. The reference site (the Yamal Agricultural Station) maintained stable SOC (3.58–3.83%) through long-term organic inputs, compensating for poor mineralogical protection. 13C NMR spectroscopy highlighted shifts from labile alkyl-C (40.88% in active fields) to oxidized O-alkyl-C (21.6% in late abandonment) and lignin-derived aryl-C (15.88% at middle abandonment), reflecting microbial processing and humification. Freeze–thaw cycles and quartz dominance mineralogy exacerbated SOM vulnerability, while fertilization sustained alkyl-C (39.61%) and balanced C:N (19–20) ratios. Principal Component Analysis linked SOC loss to declining nutrient retention and showed SOM to be reliant on physical occlusion and biochemical recalcitrance, both vulnerable to Subarctic freeze–thaw cycles that disrupt aggregates. These findings underscore the fragility of SOM in Subarctic agroecosystems, emphasizing the necessity of organic amendments to counteract limitations of poor mineralogical composition and climatic stress. Full article
(This article belongs to the Special Issue Soil Organic Matter and Tillage)
Show Figures

Figure 1

14 pages, 2215 KB  
Article
Population Parameters as Key Factors for Site-Specific Distribution of Invasive Weed Rhynchosia senna in Semiarid Temperate Agroecosystems
by Matías Quintana, Guillermo R. Chantre, Omar Reinoso and Juan P. Renzi
Agronomy 2025, 15(4), 858; https://doi.org/10.3390/agronomy15040858 - 29 Mar 2025
Viewed by 492
Abstract
The genus Rhynchosia includes more than 550 species, some exhibiting invasive behavior. Rynchosia senna var. senna (RS) is a challenging weed to control in its native range; however, its invasive potential remains unknown. The aim of this study was to evaluate RS demographic [...] Read more.
The genus Rhynchosia includes more than 550 species, some exhibiting invasive behavior. Rynchosia senna var. senna (RS) is a challenging weed to control in its native range; however, its invasive potential remains unknown. The aim of this study was to evaluate RS demographic parameters to determine its invasive potential, including (i) plant fecundity during the first year of young adult and in adult plants, (ii) seed dispersal, (iii) pre- and post-dispersal predation, (iv) soil seedbank persistence, and (v) field emergence patterns. RS fecundity declined in autumn and mainly in early established cohorts. Fecundity was influenced by pre-dispersal predation (Bruchus spp. 12 ± 2%), and post-dispersal removal by birds (66 ± 4%) and arthropods (37 ± 5%). Seed dispersal decreased with distance. Seedling emergence occurred mainly during early summer (75%), and to a lesser extent during late summer (20%) and autumn (5%). Seed physical dormancy loss (~80% in the first year) defines a short persistent seedbank. Under the evaluated conditions (native environment), RS shows a limited invasive potential. However, in non-native environments, in the absence of natural predators, its prolific fecundity and the occurrence of staggered emergence patterns could easily enhance invasiveness, enabling rapid colonization, as observed in Medicago polymorpha L. Full article
Show Figures

Figure 1

17 pages, 2510 KB  
Article
Sustainable Soil Management in Alkaline Soils: The Role of Biochar and Organic Nitrogen in Enhancing Soil Fertility
by Mushtaq Ahmad Khan, Abdul Basir, Syed Tanveer Shah, Monsif Ur Rehman, Mehmood ul Hassan, Hongbing Zheng, Abdul Basit, Árpád Székely, Aftab Jamal, Emanuele Radicetti, Yaser Hassan Dewir and Roberto Mancinelli
Land 2024, 13(11), 1869; https://doi.org/10.3390/land13111869 - 8 Nov 2024
Cited by 1 | Viewed by 1454
Abstract
Biochar (BC) serves a vital function in sequestering carbon, improving nutrient cycles, and boosting overall soil quality. This research explored the enhancement of the chemical and physical properties of soil (alkaline) using nitrogen and biochar (from organic and inorganic sources) in a semi-arid [...] Read more.
Biochar (BC) serves a vital function in sequestering carbon, improving nutrient cycles, and boosting overall soil quality. This research explored the enhancement of the chemical and physical properties of soil (alkaline) using nitrogen and biochar (from organic and inorganic sources) in a semi-arid climate during the autumn seasons of 2015–2016 and 2016–2017. The study involved applying biochar at various rates (0, 10, 20, and 30 t ha⁻1) and nitrogen at different levels (0, 90, 120, and 150 kg ha⁻1) using urea, poultry manure (PM), and farmyard manure (FYM) as nitrogen sources, which were applied to the field in a randomized complete block design with split-plot arrangement. The application of biochar at the highest rate (30 t ha⁻1) resulted in a significant increase of over 120% in soil organic matter (SOM), soil organic carbon (SOC), and soil moisture content (SMC). Additionally, it increased total soil nitrogen (STN) by 14.16% and mineral nitrogen (SMN) by 9.09%. In contrast, applying biochar at this rate reduced soil bulk density (SBD), pH, and electrical conductivity (EC) by 28.52%, 3.38%, and 2.27%, respectively, compared to the control. Similarly, applying nitrogen at 150 kg ha⁻1 using FYM significantly improved SOC, SOM, SMC, and SBD. At the same rate, using PM as a nitrogen source enhanced STN and SMN while reducing soil pH and EC. In conclusion, this study shows that applying biochar at 30 t ha⁻1 combined with nitrogen at 150 kg ha⁻1, sourced from either PM or FYM, offers great potential for improving soil fertility and promoting carbon sequestration in alkaline soils of semi-arid regions. These findings highlight the value of integrating BC and organic N sources for enhancing agroecosystem sustainability. Thus, this study provides a promising pathway to enhance soil quality, improve crop productivity, and support sustainable agricultural practices in challenging environments. Full article
Show Figures

Figure 1

15 pages, 884 KB  
Article
Phytochemicals and Functional Properties of Pitaya Juice Powders
by Mayra Denise Herrera, Jorge A. Zegbe and Luis Roberto Reveles-Torres
Plants 2024, 13(21), 3040; https://doi.org/10.3390/plants13213040 - 30 Oct 2024
Cited by 1 | Viewed by 988
Abstract
Background: Crassulacean acid metabolism plants, such as Stenocereus spp., are climate warming-resilient crops used as food and for by-products elaboration in arid and semi-arid agroecosystems. A few studies on secondary metabolites have been conducted in pitayo fruit (PF), but there are no reports [...] Read more.
Background: Crassulacean acid metabolism plants, such as Stenocereus spp., are climate warming-resilient crops used as food and for by-products elaboration in arid and semi-arid agroecosystems. A few studies on secondary metabolites have been conducted in pitayo fruit (PF), but there are no reports of these compounds in juice powders (JP) with (JPS) or without seeds (JPWS). This study was devoted to characterizing the juice powders (JPS and JPWS) of five pitayas with different flesh colors with regard to some phytochemical and functional attributes. Methods: The study was conducted with a completely random design with factorial arrangement in treatments (PF × JP). Results: Differences among pitayas were related to peel and flesh color attributes. Except for soluble dietary fiber, the remainder of the non-digestible carbohydrates were greater in JPS than in JPWS of all pitayas. Phenols and flavonoids were found to be the highest in the JPWS of all pitayas, whereas total saponins were the highest in JPS of the ‘Pink’ pitaya. The JPWS of the ‘Yellow’ and ‘Reddish-Purple’ pitayas had the highest content of betaxanthins and indicaxanthins, respectively. Antioxidant capacity was the highest in JPS of ‘Reddish-Purple’ and ‘Pink’ pitayas. Conclusions: Except for some phenolic compounds, the study suggests that pitayas’ JPS would benefit human health when freshly consumed or as elaborated by-products. Full article
Show Figures

Graphical abstract

18 pages, 3699 KB  
Article
Combined Application of Chemical and Organic Fertilizers Promoted Soil Carbon Sequestration and Bacterial Community Diversity in Dryland Wheat Fields
by Hongmei Song, Zixuan Chang, Xuan Hu, Yan Li, Chengjiao Duan, Lifan Yang, Haoying Wang and Tingliang Li
Land 2024, 13(8), 1296; https://doi.org/10.3390/land13081296 - 16 Aug 2024
Cited by 7 | Viewed by 2501
Abstract
The use of fertilizers is mainly adopted in arid regions to improve the soil carbon (C) pool and crop productivity. However, the mechanisms underlying improvements in dryland wheat field soils related to microbial metabolic activity and community structure remain poorly understood. Therefore, a [...] Read more.
The use of fertilizers is mainly adopted in arid regions to improve the soil carbon (C) pool and crop productivity. However, the mechanisms underlying improvements in dryland wheat field soils related to microbial metabolic activity and community structure remain poorly understood. Therefore, a field experiment with four fertilization treatments and no fertilizer as the control (CK) was conducted for 10 years in a semi-arid region of China. The results revealed that the combined application of chemical and organic fertilizers (fermented chicken manure) clearly increased the levels of soil organic carbon (SOC), dissolved organic carbon (DOC), and light-fraction organic carbon (LFOC) by 13.54–16.72%, 6.96–9.01%, and 11.00–13.51%, respectively, compared to the sole use of chemical fertilizers (FP treatment). Moreover, the combined treatment not only enhanced the metabolic activity of microorganisms concerning carbon source utilization but also increased the diversity of the bacterial community. This caused noticeable changes in the composition of the bacterial community. A Mantel test analysis revealed that Bacteroidetes and Mortierellomycota significantly enhanced the metabolic activity associated with carbohydrate, amino acid, and carboxylic acid C sources. Actinobacteria, Bacteroidetes, and Mortierellomycota facilitated the accumulation of active C and particulate organic carbon (POC), whereas Mortierellomycota specifically promoted the accumulation of heavy-fraction organic carbon (HFOC), thereby collectively influencing the SOC content. The combined application of chemical and organic fertilizers increased the abundance of Bacteroidetes and Mortierellomycota. This enhancement improved the metabolic utilization of carbohydrates, amino acids, and carboxylic acids, resulting in alterations in the types and quantities of soil metabolites. Consequently, these alterations ultimately affect the composition and quantity of the SOC pool in arid agroecosystems. In conclusion, the combined application of balanced NPK fertilizers and organic fertilizers has a strong positive effect in improving soil microbial activity and the soil C pool. Full article
Show Figures

Graphical abstract

Back to TopTop