Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = seismic awareness raising

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3910 KiB  
Article
A Rapid Assessment Method for Evaluating the Seismic Risk of Individual Buildings in Lisbon
by Francisco Mota de Sá, Mário Santos Lopes, Carlos Sousa Oliveira and Mónica Amaral Ferreira
Sustainability 2025, 17(13), 6027; https://doi.org/10.3390/su17136027 - 1 Jul 2025
Viewed by 665
Abstract
Assessing the seismic performance of buildings from various epochs is essential for guiding retrofitting policies and educating occupants about their homes’ conditions. However, limited resources pose challenges. Some approaches focus on detailed analyses of a limited number of buildings, while others favor broader [...] Read more.
Assessing the seismic performance of buildings from various epochs is essential for guiding retrofitting policies and educating occupants about their homes’ conditions. However, limited resources pose challenges. Some approaches focus on detailed analyses of a limited number of buildings, while others favor broader coverage with less precision. This paper presents a seismic risk assessment method that balances and integrates the strengths of both, using a comprehensive building survey. We propose a low-cost indicator for evaluating the structural resilience of individual buildings, designed to inform both authorities and property owners, support building rankings, and raise awareness. This indicator classifies buildings by their taxonomy and uses analytical capacity curves (2D or 3D studies) obtained from consulting hundreds of studies to determine the ultimate acceleration (agu) that each building type can withstand before collapse. It also considers irregularities found during the survey (to the exterior and interior) through structural modifiers Δ, and adjusts the peak ground acceleration the building can withstand, agu, based on macroseismic data from past events and based on potential retrofitting, Δ+. Although this method may not achieve high accuracy, it provides a significant approximation for detailed analysis with limited resources and is easy to replicate for similar constructions. The final agu value, considered as resistance, is then compared to the seismic demand at the foundation of the building (accounting for hazard and soil conditions at the building location), resulting in a final R-value. This paper provides specificities to the methodology and applies it to selected areas of the City of Lisbon, clearly supporting the advancement of a more sustainable society. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

24 pages, 3562 KiB  
Article
Building Resilience: Youth Learning Through Earthquake Shaking Simulations
by Gemma Musacchio, Agostino Goretti and Fabrizio Meroni
Geosciences 2025, 15(6), 216; https://doi.org/10.3390/geosciences15060216 - 10 Jun 2025
Viewed by 625
Abstract
This paper illustrates how youth education can foster resilience and promote risk awareness through interactive learning. It presents Shake It!, an engaging, hands-on educational module designed for middle school students that integrates risk education with experiential activities. The module begins with an [...] Read more.
This paper illustrates how youth education can foster resilience and promote risk awareness through interactive learning. It presents Shake It!, an engaging, hands-on educational module designed for middle school students that integrates risk education with experiential activities. The module begins with an introduction to structural components, construction materials, and seismic behaviour. Students then engage in experiential learning by building and testing models on educational shaking tables. Through this process, they explore key concepts such as building vulnerability, resonance, and earthquake-resistant constructions. The central message is that building response to earthquakes can be understood through hands-on learning, and that effective protection is achievable, making the engagement of younger generations in resilience education a key step toward building safer communities. Shake It! has been successfully tested with several hundred students, both during open days at the National Institute of Geophysics and Volcanology and in classroom settings. The activity consistently receives positive feedback for its ability to actively involve students and effectively raise awareness about earthquake risks in an accessible way that enhances retention. Full article
(This article belongs to the Collection Education in Geosciences)
Show Figures

Figure 1

19 pages, 6788 KiB  
Article
Serious Games for Seismic Risk Education: The Case of the ENP-CP Project
by Agostino Goretti and Gemma Musacchio
GeoHazards 2024, 5(2), 310-328; https://doi.org/10.3390/geohazards5020016 - 8 Apr 2024
Cited by 4 | Viewed by 2088
Abstract
This paper delves into the potential advantages of integrating gamification into seismic risk management education, with a specific emphasis on the efficacy of serious games in augmenting the learning process. It offers an illustration of gamification within the framework of a seismic risk [...] Read more.
This paper delves into the potential advantages of integrating gamification into seismic risk management education, with a specific emphasis on the efficacy of serious games in augmenting the learning process. It offers an illustration of gamification within the framework of a seismic risk preparedness project involving multiple countries, languages, and cultures and across the time of the COVID-19 pandemic. The innovation of this approach largely lies in shifting the focus from competition, which is typical in most games, to collaboration. Three digital serious games were implemented to tackle facets of seismic risk management that are particularly favourable for empowering communities at risk. These games were first used in a hybrid event where students from Algeria, Morocco, and Italy engaged in gameplay both in person within their respective classrooms and remotely with classes in each country. The evaluation study showed the positive impact of gamification in captivating young participants and thereby instilling best practices in seismic risk management. Full article
Show Figures

Figure 1

10 pages, 3849 KiB  
Article
Augmented Reality in Seismic Risk Management: A Contribution to the Reduction of Non-Structural Damage
by Susanna Falsaperla, Danilo Reitano and Gemma Musacchio
Geosciences 2022, 12(9), 332; https://doi.org/10.3390/geosciences12090332 - 3 Sep 2022
Cited by 5 | Viewed by 3697
Abstract
To increase seismic resilience is one of the challenges the developers of new technologies face to reduce seismic risk. We set up an augmented reality (AR) exhibition with which users’ curiosity was confronted with the opportunity to have a wealth of information on [...] Read more.
To increase seismic resilience is one of the challenges the developers of new technologies face to reduce seismic risk. We set up an augmented reality (AR) exhibition with which users’ curiosity was confronted with the opportunity to have a wealth of information on damaging earthquakes that could be a multimedia add-on to the plain “single-layer exhibit”. AR is an emergent technology developed to “augment” reality through various devices; it combines the real world with virtual items, such as images and videos. Our AR exhibition aims to: (i) show the effects of earthquakes even in cases of moderate magnitude; and (ii) promote preventive actions to reduce non-structural damage. It can be customized for different seismic scenarios. In addition, it offers a holistic approach to communicate problems and solutions—with the cost and degree of ease of execution for each solution—to reduce non-structural damage at home, school, and office. Our AR exhibition can do more than just a plain text or a preconceived video: it can trigger fruitful interaction between the presenters, or even the stand-alone poster, and the public. Such interactivity offers an easy engagement to people of all ages and cultural backgrounds. AR is, indeed, extremely flexible in raising recipients’ interest; moreover, it is an appealing tool for the digital native generations. The positive feedback received led us to conclude that this is an effective way to raise awareness and individual preparedness to seismic risk. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

18 pages, 5705 KiB  
Article
VS30 Seismic Microzoning Based on a Geomorphology Map: Experimental Case Study of Chiang Mai, Chiang Rai, and Lamphun, Thailand
by Patcharavadee Thamarux, Masashi Matsuoka, Nakhorn Poovarodom and Junko Iwahashi
ISPRS Int. J. Geo-Inf. 2019, 8(7), 309; https://doi.org/10.3390/ijgi8070309 - 18 Jul 2019
Cited by 8 | Viewed by 5511
Abstract
Thailand is not known to be an earthquake-prone country; however, in 2014, an unexpected moderate earthquake caused severe damage to infrastructure and resulted in public panic. This event caught public attention and raised awareness of national seismic disaster management. However, the expertise and [...] Read more.
Thailand is not known to be an earthquake-prone country; however, in 2014, an unexpected moderate earthquake caused severe damage to infrastructure and resulted in public panic. This event caught public attention and raised awareness of national seismic disaster management. However, the expertise and primary data required for implementation of seismic disaster management are insufficient, including data on soil character which are used in amplification analyses for further ground motion prediction evaluations. Therefore, in this study, soil characterization was performed to understand the seismic responses of soil rigidity. The final output is presented in a seismic microzoning map. A geomorphology map was selected as the base map for the analysis. The geomorphology units were assigned with a time-averaged shear wave velocity of 30 m (VS30), which was collected by the spatial autocorrelation (SPAC) method of microtremor array measurements. The VS30 values were obtained from the phase velocity of the Rayleigh wave corresponding to a 40 m wavelength (C(40)). From the point feature, the VS30 values were transformed into polygonal features based on the geomorphological characteristics. Additionally, the automated geomorphology classification was explored in this study. Then, the seismic microzones were compared with the locations of major damage from the 2014 records for validation. The results from this study include geomorphological classification and seismic microzoning. The results suggest that the geomorphology units obtained from a pixel-based classification can be recommended for use in seismic microzoning. For seismic microzoning, the results show mainly stiff soil and soft rocks in the study area, and these geomorphological units have relatively high amplifications. The results of this study provide a valuable base map for further disaster management analyses. Full article
(This article belongs to the Special Issue Geomatics and Geo-Information in Earthquake Studies)
Show Figures

Figure 1

3 pages, 165 KiB  
Editorial
Reducing the Seismic Vulnerability of Existing Buildings: Assessment and Retrofit
by Tiago Miguel Ferreira, Nuno Mendes and Rui Silva
Buildings 2019, 9(6), 148; https://doi.org/10.3390/buildings9060148 - 19 Jun 2019
Cited by 4 | Viewed by 4105
Abstract
Devastating seismic events occurring all over the world keep raising the awareness of the scientific, technical and political communities to the need of identifying assets at risk and developing more effective and cost-efficient seismic risk mitigation strategies [...] Full article
16 pages, 1994 KiB  
Article
Using RISKPLAN for Earthquake Risk Assessment in Sichuan Province, China
by Yan Shi and Klaus Seeland
Sustainability 2019, 11(6), 1812; https://doi.org/10.3390/su11061812 - 26 Mar 2019
Cited by 4 | Viewed by 6109
Abstract
Sichuan Province of China is a prominent population and economic growth center as well as an earthquake-stricken region. A sound understanding of the seismic risk that Sichuan Province is facing is useful to raise risk awareness, achieve disaster risk reduction (DRR), and guarantee [...] Read more.
Sichuan Province of China is a prominent population and economic growth center as well as an earthquake-stricken region. A sound understanding of the seismic risk that Sichuan Province is facing is useful to raise risk awareness, achieve disaster risk reduction (DRR), and guarantee sustainable socio-economic development. Earthquake risk assessment is the first step in these efforts. This study strives to demonstrate the feasibility of applying an integrated earthquake risk assessment in Sichuan Province of China using RISKPLAN, a risk evaluation tool of natural hazards developed by the Swiss Federal Office for the Environment (FOEN). The time and location of seismic events in Sichuan were incorporated into three scenarios and calculated with respect to expected losses under different assumed conditions of earthquake occurrence, such as the recurrence interval and magnitude. Furthermore, cost-effectiveness calculations were made regarding the various possible scenarios to assess the ratio of expected losses and the required financial means for prevention and mitigation measures against the effects of seismic activities in Sichuan. Our results show that when the magnitude of the seismic event is greater than expected, reduction and mitigation investments for a possible earthquake risk will be all the more rewarding. Full article
Show Figures

Figure 1

27 pages, 6047 KiB  
Article
Poaching Detection Technologies—A Survey
by Jacob Kamminga, Eyuel Ayele, Nirvana Meratnia and Paul Havinga
Sensors 2018, 18(5), 1474; https://doi.org/10.3390/s18051474 - 8 May 2018
Cited by 52 | Viewed by 18465
Abstract
Between 1960 and 1990, 95% of the black rhino population in the world was killed. In South Africa, a rhino was killed every 8 h for its horn throughout 2016. Wild animals, rhinos and elephants, in particular, are facing an ever increasing poaching [...] Read more.
Between 1960 and 1990, 95% of the black rhino population in the world was killed. In South Africa, a rhino was killed every 8 h for its horn throughout 2016. Wild animals, rhinos and elephants, in particular, are facing an ever increasing poaching crisis. In this paper, we review poaching detection technologies that aim to save endangered species from extinction. We present requirements for effective poacher detection and identify research challenges through the survey. We describe poaching detection technologies in four domains: perimeter based, ground based, aerial based, and animal tagging based technologies. Moreover, we discuss the different types of sensor technologies that are used in intruder detection systems such as: radar, magnetic, acoustic, optic, infrared and thermal, radio frequency, motion, seismic, chemical, and animal sentinels. The ultimate long-term solution for the poaching crisis is to remove the drivers of demand by educating people in demanding countries and raising awareness of the poaching crisis. Until prevention of poaching takes effect, there will be a continuous urgent need for new (combined) approaches that take up the research challenges and provide better protection against poaching in wildlife areas. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop