Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = secreted trimeric spikes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1544 KB  
Article
Longitudinal Analysis of Humoral and Cellular Immune Response up to 6 Months after SARS-CoV-2 BA.5/BF.7/XBB Breakthrough Infection and BA.5/BF.7-XBB Reinfection
by Xun Wang, Meng Zhang, Kaifeng Wei, Chen Li, Jinghui Yang, Shujun Jiang, Chaoyue Zhao, Xiaoyu Zhao, Rui Qiao, Yuchen Cui, Yanjia Chen, Jiayan Li, Guonan Cai, Changyi Liu, Jizhen Yu, Wenhong Zhang, Faren Xie, Pengfei Wang and Yanliang Zhang
Vaccines 2024, 12(5), 464; https://doi.org/10.3390/vaccines12050464 - 26 Apr 2024
Cited by 8 | Viewed by 2681
Abstract
The rapid mutation of SARS-CoV-2 has led to multiple rounds of large-scale breakthrough infection and reinfection worldwide. However, the dynamic changes of humoral and cellular immunity responses to several subvariants after infection remain unclear. In our study, a 6-month longitudinal immune response evaluation [...] Read more.
The rapid mutation of SARS-CoV-2 has led to multiple rounds of large-scale breakthrough infection and reinfection worldwide. However, the dynamic changes of humoral and cellular immunity responses to several subvariants after infection remain unclear. In our study, a 6-month longitudinal immune response evaluation was conducted on 118 sera and 50 PBMC samples from 49 healthy individuals who experienced BA.5/BF.7/XBB breakthrough infection or BA.5/BF.7-XBB reinfection. By studying antibody response, memory B cell, and IFN-γ secreting CD4+/CD8+ T cell response to several SARS-CoV-2 variants, we observed that each component of immune response exhibited distinct kinetics. Either BA.5/BF.7/XBB breakthrough infection or BA.5/BF.7-XBB reinfection induces relatively high level of binding and neutralizing antibody titers against Omicron subvariants at an early time point, which rapidly decreases over time. Most of the individuals at 6 months post-breakthrough infection completely lost their neutralizing activities against BQ.1.1, CH.1.1, BA.2.86, JN.1 and XBB subvariants. Individuals with BA.5/BF.7-XBB reinfection exhibit immune imprinting shifting and recall pre-existing BA.5/BF.7 neutralization antibodies. In the BA.5 breakthrough infection group, the frequency of BA.5 and XBB.1.16-RBD specific memory B cells, resting memory B cells, and intermediate memory B cells gradually increased over time. On the other hand, the frequency of IFN-γ secreting CD4+/CD8+ T cells induced by WT/BA.5/XBB.1.16 spike trimer remains stable over time. Overall, our research indicates that individuals with breakthrough infection have rapidly declining antibody levels but have a relatively stable cellular immunity that can provide some degree of protection from future exposure to new antigens. Full article
(This article belongs to the Special Issue Vaccination-Induced Antibody and B Cell Immune Response)
Show Figures

Figure 1

19 pages, 7301 KB  
Article
Measles Virus-Based Vaccine Expressing Membrane-Anchored Spike of SARS-CoV-2 Inducing Efficacious Systemic and Mucosal Humoral Immunity in Hamsters
by Zhi-Hui Yang, Yan-Li Song, Jie Pei, Song-Zhuang Li, Rui-Lun Liu, Yu Xiong, Jie Wu, Yuan-Lang Liu, Hui-Fen Fan, Jia-Hui Wu, Ze-Jun Wang, Jing Guo, Sheng-Li Meng, Xiao-Qi Chen, Jia Lu and Shuo Shen
Viruses 2024, 16(4), 559; https://doi.org/10.3390/v16040559 - 3 Apr 2024
Cited by 3 | Viewed by 3098
Abstract
As SARS-CoV-2 continues to evolve and COVID-19 cases rapidly increase among children and adults, there is an urgent need for a safe and effective vaccine that can elicit systemic and mucosal humoral immunity to limit the emergence of new variants. Using the Chinese [...] Read more.
As SARS-CoV-2 continues to evolve and COVID-19 cases rapidly increase among children and adults, there is an urgent need for a safe and effective vaccine that can elicit systemic and mucosal humoral immunity to limit the emergence of new variants. Using the Chinese Hu191 measles virus (MeV-hu191) vaccine strain as a backbone, we developed MeV chimeras stably expressing the prefusion forms of either membrane-anchored, full-length spike (rMeV-preFS), or its soluble secreted spike trimers with the help of the SP-D trimerization tag (rMeV-S+SPD) of SARS-CoV-2 Omicron BA.2. The two vaccine candidates were administrated in golden Syrian hamsters through the intranasal or subcutaneous routes to determine the optimal immunization route for challenge. The intranasal delivery of rMeV-S+SPD induced a more robust mucosal IgA antibody response than the subcutaneous route. The mucosal IgA antibody induced by rMeV-preFS through the intranasal routine was slightly higher than the subcutaneous route, but there was no significant difference. The rMeV-preFS vaccine stimulated higher mucosal IgA than the rMeV-S+SPD vaccine through intranasal or subcutaneous administration. In hamsters, intranasal administration of the rMeV-preFS vaccine elicited high levels of NAbs, protecting against the SARS-CoV-2 Omicron BA.2 variant challenge by reducing virus loads and diminishing pathological changes in vaccinated animals. Encouragingly, sera collected from the rMeV-preFS group consistently showed robust and significantly high neutralizing titers against the latest variant XBB.1.16. These data suggest that rMeV-preFS is a highly promising COVID-19 candidate vaccine that has great potential to be developed into bivalent vaccines (MeV/SARS-CoV-2). Full article
Show Figures

Figure 1

16 pages, 2724 KB  
Article
Assessment of Human SARS CoV-2-Specific T-Cell Responses Elicited In Vitro by New Computationally Designed mRNA Immunogens (COVARNA)
by Ignasi Esteban, Carmen Pastor-Quiñones, Lorena Usero, Elena Aurrecoechea, Lorenzo Franceschini, Arthur Esprit, Josep Lluís Gelpí, Francisco Martínez-Jiménez, Núria López-Bigas, Karine Breckpot, Kris Thielemans, Lorna Leal, Carmen Elena Gómez, Marta Sisteré-Oró, Andreas Meyerhans, Mariano Esteban, María José Alonso, Felipe García and Montserrat Plana
Vaccines 2024, 12(1), 15; https://doi.org/10.3390/vaccines12010015 - 22 Dec 2023
Viewed by 2690
Abstract
The COVID-19 pandemic has brought significant changes and advances in the field of vaccination, including the implementation and widespread use of encapsidated mRNA vaccines in general healthcare practice. Here, we present two new mRNAs expressing antigenic parts of the SARS-CoV-2 spike protein and [...] Read more.
The COVID-19 pandemic has brought significant changes and advances in the field of vaccination, including the implementation and widespread use of encapsidated mRNA vaccines in general healthcare practice. Here, we present two new mRNAs expressing antigenic parts of the SARS-CoV-2 spike protein and provide data supporting their functionality. The first mRNA, called RBD-mRNA, encodes a trimeric form of the virus spike protein receptor binding domain (RBD). The other mRNA, termed T-mRNA, codes for the relevant HLA I and II spike epitopes. The two mRNAs (COVARNA mRNAs) were designed to be used for delivery to cells in combination, with the RBD-mRNA being the primary source of antigen and the T-mRNA working as an enhancer of immunogenicity by supporting CD4 and CD8 T-cell activation. This innovative approach substantially differs from other available mRNA vaccines, which are largely directed to antibody production by the entire spike protein. In this study, we first show that both mRNAs are functionally transfected into human antigen-presenting cells (APCs). We obtained peripheral blood mononuclear cell (PBMC) samples from three groups of voluntary donors differing in their immunity against SARS-CoV-2: non-infected (naïve), infected-recovered (convalescent), and vaccinated. Using an established method of co-culturing autologous human dendritic cells (hDCs) with T-cells, we detected proliferation and cytokine secretion, thus demonstrating the ability of the COVARNA mRNAs to activate T-cells in an antigen-specific way. Interestingly, important differences in the intensity of the response between the infected-recovered (convalescent) and vaccinated donors were observed, with the levels of T-cell proliferation and cytokine secretion (IFNγ, IL-2R, and IL-13) being higher in the vaccinated group. In summary, our data support the further study of these mRNAs as a combined approach for future use as a vaccine. Full article
(This article belongs to the Special Issue mRNA Vaccines: Pioneering the Future of Vaccination)
Show Figures

Figure 1

13 pages, 2380 KB  
Article
Secreted Trimeric Chikungunya Virus Spikes from Insect Cells: Production, Purification, and Glycosylation Status
by Tessy A. H. Hick, Corinne Geertsema, Maurice G. L. Henquet, Dirk E. Martens, Stefan W. Metz and Gorben P. Pijlman
Processes 2022, 10(1), 162; https://doi.org/10.3390/pr10010162 - 14 Jan 2022
Cited by 1 | Viewed by 4442
Abstract
Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne virus that causes a severe febrile illness with long-lasting arthralgia in humans. As there is no vaccine to protect humans and limit CHIKV epidemics, the virus continues to be a global public health concern. The [...] Read more.
Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne virus that causes a severe febrile illness with long-lasting arthralgia in humans. As there is no vaccine to protect humans and limit CHIKV epidemics, the virus continues to be a global public health concern. The CHIKV envelope glycoproteins E1 and E2 are important immunogens; therefore, the aim of this study is to produce trimeric CHIKV spikes in insect cells using the baculovirus expression system. The CHIKV E1 and E2 ectodomains were covalently coupled by a flexible linker that replaces the 6K transmembrane protein. The C-terminal E1 transmembrane was replaced by a Strep-tag II for the purification of secreted spikes from the culture fluid. After production in Sf9 suspension cells (product yields of 5.8–7.6 mg/L), the CHIKV spikes were purified by Strep-Tactin affinity chromatography, which successfully cleared the co-produced baculoviruses. Bis(sulfosuccinimidyl)suberate cross-linking demonstrated that the spikes are secreted as trimers. PNGase F treatment showed that the spikes are glycosylated. LC–MS/MS-based glycoproteomic analysis confirmed the glycosylation and revealed that the majority are of the mannose- or hybrid-type N-glycans and <2% have complex-type N-glycans. The LC –MS/MS analysis also revealed three O-glycosylation sites in E1. In conclusion, the trimeric, glycosylated CHIKV spikes have been successfully produced in insect cells and are now available for vaccination studies. Full article
(This article belongs to the Special Issue State of the Art of Protein Expression Systems)
Show Figures

Figure 1

11 pages, 3329 KB  
Communication
Trimeric SARS-CoV-2 Spike Proteins Produced from CHO Cells in Bioreactors Are High-Quality Antigens
by Paco Pino, Joeri Kint, Divor Kiseljak, Valentina Agnolon, Giampietro Corradin, Andrey V. Kajava, Paolo Rovero, Ronald Dijkman, Gerco den Hartog, Jason S. McLellan, Patrick O. Byrne, Maria J. Wurm and Florian M. Wurm
Processes 2020, 8(12), 1539; https://doi.org/10.3390/pr8121539 - 25 Nov 2020
Cited by 22 | Viewed by 11943
Abstract
The spike protein of the pandemic human corona virus is essential for its entry into human cells. In fact, most neutralizing antibodies against Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) are directed against the Virus-surface exposed spike protein, making it the antigen [...] Read more.
The spike protein of the pandemic human corona virus is essential for its entry into human cells. In fact, most neutralizing antibodies against Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) are directed against the Virus-surface exposed spike protein, making it the antigen of choice for use in vaccines and diagnostic tests. In the current pandemic context, global demand for spike proteins has rapidly increased and could exceed hundreds of grams to kilograms annually. Coronavirus spikes are large heavily glycosylated homo-trimeric complexes, with inherent instability. The poor manufacturability now threatens the availability of these proteins for vaccines and diagnostic tests. Here, we outline scalable, Good Manufacturing Practice (GMP) compliant, and chemically defined processes for the production of two cell-secreted stabilized forms of the trimeric spike proteins (Wuhan and D614G variant). The processes are chemically defined and based on clonal suspension-CHO cell populations and on protein purification via a two-step scalable downstream process. The trimeric conformation was confirmed using electron microscopy and HPLC analysis. Binding to susceptible cells was shown using a virus-inhibition assay. The diagnostic sensitivity and specificity for detection of serum SARS-CoV-2-specific-immunoglobulin molecules was found to exceed that of spike fragments (Spike subunit-1, S1 and Receptor Binding Domain, RBD). The process described here will enable production of sufficient high-quality trimeric spike protein to meet the global demand for SARS-CoV-2 diagnostic tests and potentially vaccines. Full article
(This article belongs to the Special Issue Redesign Processes in the Age of the Fourth Industrial Revolution)
Show Figures

Figure 1

Back to TopTop