Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = search for extraterrestrial intelligence (SETI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 674 KiB  
Article
Deciding Technosignature Search Strategies: Multi-Criteria Fuzzy Logic to Find Extraterrestrial Intelligence
by Juan Miguel Sánchez-Lozano, Eloy Peña-Asensio and Hector Socas-Navarro
Aerospace 2024, 11(1), 88; https://doi.org/10.3390/aerospace11010088 - 18 Jan 2024
Viewed by 2022
Abstract
This study presents the implementation of Multi-Criteria Decision-Making (MCDM) methodologies, particularly the fuzzy technique for order of preference by similarity to ideal solution (TOPSIS), in prioritizing technosignatures (TSs) for the search for extraterrestrial intelligence (SETI). By incorporating expert opinions and weighted criteria based [...] Read more.
This study presents the implementation of Multi-Criteria Decision-Making (MCDM) methodologies, particularly the fuzzy technique for order of preference by similarity to ideal solution (TOPSIS), in prioritizing technosignatures (TSs) for the search for extraterrestrial intelligence (SETI). By incorporating expert opinions and weighted criteria based on the established Axes of Merit, our analysis offers insights into the relative importance of various TSs. Notably, radio and optical communications are emphasized, in contrast to dark side illumination and starshades in transit. We introduce a new axis, Scale Sensitivity, designed to assess the variability of TS metrics. A sensitivity analysis confirms the robustness of our approach. Our findings, especially the highlighted significance of artifacts orbiting Earth, the Moon, or the Sun, indicate a need to broaden evaluative criteria within SETI research. This suggests an enhancement of the Axes of Merit, with a focus on addressing the plausibility of TSs. As the quest to resolve the profound question of our solitude in the cosmos continues, SETI efforts would benefit from exploring innovative prioritization methodologies that effectively quantify TS search strategies. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

14 pages, 2424 KiB  
Article
A Statistical Estimation of the Occurrence of Extraterrestrial Intelligence in the Milky Way Galaxy
by Xiang Cai, Jonathan H. Jiang, Kristen A. Fahy and Yuk L. Yung
Galaxies 2021, 9(1), 5; https://doi.org/10.3390/galaxies9010005 - 18 Jan 2021
Cited by 17 | Viewed by 12560
Abstract
In the field of astrobiology, the precise location, prevalence, and age of potential extraterrestrial intelligence (ETI) have not been explicitly explored. Here, we address these inquiries using an empirical galactic simulation model to analyze the spatial–temporal variations and the prevalence of potential ETI [...] Read more.
In the field of astrobiology, the precise location, prevalence, and age of potential extraterrestrial intelligence (ETI) have not been explicitly explored. Here, we address these inquiries using an empirical galactic simulation model to analyze the spatial–temporal variations and the prevalence of potential ETI within the Galaxy. This model estimates the occurrence of ETI, providing guidance on where to look for intelligent life in the Search for ETI (SETI) with a set of criteria, including well-established astrophysical properties of the Milky Way. Further, typically overlooked factors such as the process of abiogenesis, different evolutionary timescales, and potential self-annihilation are incorporated to explore the growth propensity of ETI. We examine three major parameters: (1) the likelihood rate of abiogenesis (λA); (2) evolutionary timescales (Tevo); and (3) probability of self-annihilation of complex life (Pann). We found Pann to be the most influential parameter determining the quantity and age of galactic intelligent life. Our model simulation also identified a peak location for ETI at an annular region approximately 4 kpc from the galactic center around 8 billion years (Gyrs), with complex life decreasing temporally and spatially from the peak point, asserting a high likelihood of intelligent life in the galactic inner disk. The simulated age distributions also suggest that most of the intelligent life in our galaxy are young, thus making observation or detection difficult. Full article
Show Figures

Figure 1

Back to TopTop