Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,467)

Search Parameters:
Keywords = scanning photoelectron microscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3529 KB  
Article
Synthesis, Characterization, and Evaluation of Folic Acid Release Ability of Acrylamide–Acrylic Acid Hydrogels and Acrylamide–Acrylic Acid/Functionalized Carbon Nanotube Nanocomposite Hydrogels
by Karina Sandoval-García, Jorge A. Cortés-Ortega, Edgar B. Figueroa-Ochoa, Víctor H. Antolín-Cerón and Sergio M. Nuño-Donlucas
Int. J. Mol. Sci. 2025, 26(20), 9847; https://doi.org/10.3390/ijms26209847 (registering DOI) - 10 Oct 2025
Abstract
Hydrogels of acrylamide (AM)–acrylic acid (AA) and nanocomposite hydrogels of AM–AA and carbon nanotubes (CNTs) functionalized with acyl chloride groups (CNTsOxCl) were synthesized and characterized, and their ability to release folic acid was analyzed. Both hydrogel types were synthesized via redox [...] Read more.
Hydrogels of acrylamide (AM)–acrylic acid (AA) and nanocomposite hydrogels of AM–AA and carbon nanotubes (CNTs) functionalized with acyl chloride groups (CNTsOxCl) were synthesized and characterized, and their ability to release folic acid was analyzed. Both hydrogel types were synthesized via redox polymerization. CNTs were prepared via chemical vapor deposition. The prepared samples were analyzed via transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, differential scanning calorimetry, and field-emission scanning electron microscopy. Their swelling ability and their mechanical properties (compression tests) were determined at room temperature ~298.15 K, whereas their ability to release folic acid was studied using UV–VIS spectroscopy. The equilibrium swelling of the AM–AA hydrogels was greater than that of the AM–AA/CNTsOxCl nanocomposite hydrogels prepared at the same monomeric relation (wt%), whereas the Young moduli of these nanocomposite hydrogels were higher than that of AM–AA hydrogels. For the AM–AA/CNTsOxCl nanocomposite hydrogels, polymer chains containing AM and AA units were grafted to CNTsOxCl. The glass–transition temperatures of AM–AA nanocomposite hydrogels were higher than that of AM–AA hydrogels. Folic acid release from the AM–AA hydrogels and AM–AA/CNTsOxCl nanocomposite hydrogels was successfully adjusted using the Weibull model. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Graphical abstract

12 pages, 1493 KB  
Article
Research on the Synthesis and Conductivity of Titanium Oxycarbide
by Shaolong Li, Fan Yang, Peizhu Mao, Tianzhu Mu, Fuxing Zhu and Shengwei Li
Materials 2025, 18(19), 4621; https://doi.org/10.3390/ma18194621 - 6 Oct 2025
Viewed by 170
Abstract
In this study, TiCxOy was produced by sintering in an argon atmosphere using carbon–thermal reduction with TiO2 and graphite powder as the initial materials. The sintered TiCxOy was analyzed using X-ray diffraction, scanning electron microscopy, and [...] Read more.
In this study, TiCxOy was produced by sintering in an argon atmosphere using carbon–thermal reduction with TiO2 and graphite powder as the initial materials. The sintered TiCxOy was analyzed using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. As the oxygen content increased, the grain color of the sintered TiCxOy gradually shifted from gray to reddish-brown. The structure of TiCxOy resembles that of a coral, with a uniform distribution of Ti, C, and O throughout the sample. Analysis using X-ray photoelectron spectroscopy reveals the presence of bivalent, trivalent, and tetravalent titanium. Utilizing General Structure Analysis System software(GSAS-II), the X-ray Diffraction data obtained were refined, revealing a gradual decrease in lattice parameters as the oxygen atom content increased. Furthermore, the conductivity and density of the single phase, determined through the four-probe method and the Archimedes method, respectively, exhibited an increase in tandem with the rise in C content. Full article
(This article belongs to the Section Advanced Materials Characterization)
16 pages, 3501 KB  
Article
A Comprehensive Study of the Optical, Structural, and Morphological Properties of Chemically Deposited ZnO Thin Films
by Sayra Guadalupe Ruvalcaba-Manzo, Rafael Ramírez-Bon, Ramón Ochoa-Landín and Santos Jesús Castillo
Inorganics 2025, 13(10), 331; https://doi.org/10.3390/inorganics13100331 - 2 Oct 2025
Viewed by 243
Abstract
Zinc oxide (ZnO) is a wide bandgap semiconductor with optoelectronic and photocatalytic properties, which depend on its optical, structural, and morphological characteristics. In this study, we synthesized ZnO thin films by chemical bath deposition (CBD) and then thermally annealed them at 400 °C [...] Read more.
Zinc oxide (ZnO) is a wide bandgap semiconductor with optoelectronic and photocatalytic properties, which depend on its optical, structural, and morphological characteristics. In this study, we synthesized ZnO thin films by chemical bath deposition (CBD) and then thermally annealed them at 400 °C and 600 °C to evaluate the effect of thermal treatments. We characterized their structural, optical, morphological, and chemical properties using X-ray diffraction (XRD), UV–Vis spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The optical bandgap values were 3.20 eV for the as-grown thin films, and 3.23 eV and 3.21 eV after annealing at 400 °C and 600 °C, respectively. SEM micrographs revealed a change from elongated agglomerates in the as-grown thin films to uniform flower-like structures after annealing at 600 °C. XPS analysis confirmed ZnO formation in all samples, and we detected residual precursor species only in the as-grown thin films, which were completely removed by annealing at 600 °C. These results demonstrate that the CBD synthesis of ZnO can tune its optical and morphological properties through thermal annealing, making it suitable for optoelectronic, sensing, and photocatalytic applications. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2025)
Show Figures

Figure 1

23 pages, 11246 KB  
Article
Durable Low-Friction Graphite Coatings Enabled by a Polydopamine Adhesive Underlayer
by Adedoyin Abe, Fernando Maia de Oliveira, Deborah Okyere, Mourad Benamara, Jingyi Chen, Yuriy I. Mazur and Min Zou
Lubricants 2025, 13(10), 433; https://doi.org/10.3390/lubricants13100433 - 30 Sep 2025
Viewed by 312
Abstract
This study investigates the tribological performance and wear mechanisms of graphite and polydopamine/graphite (PDA/graphite) coatings on stainless steel under dry sliding conditions. While graphite is widely used as a solid lubricant, its poor adhesion to metal substrates limits long-term durability. Incorporating an adhesion-promoting [...] Read more.
This study investigates the tribological performance and wear mechanisms of graphite and polydopamine/graphite (PDA/graphite) coatings on stainless steel under dry sliding conditions. While graphite is widely used as a solid lubricant, its poor adhesion to metal substrates limits long-term durability. Incorporating an adhesion-promoting PDA underlayer significantly improved coating lifetime and wear resistance. Tribological testing revealed that PDA/graphite coatings maintained a coefficient of friction (COF) below 0.15 for over seven times longer than graphite-only coatings. High-resolution scanning electron microscopy, SEM, and profilometry showed that PDA improved coating adhesion and suppressed lateral debris transport, confining wear to a narrow zone. Surface and counterface analyses confirmed enhanced graphite retention and formation of cohesive transfer films. Raman spectroscopy indicated only modest changes in the D and G bands. X-ray Photoelectron Spectroscopy, XPS analysis, confirmed that coating failure correlated with the detection of Fe and Cr peaks and oxide formation. Together, these results demonstrate that PDA enhances interfacial adhesion and structural stability without compromising lubrication performance, offering a strategy to extend the durability of carbon-based solid lubricant systems for high-contact-pressure applications. Full article
Show Figures

Figure 1

11 pages, 5768 KB  
Article
Highly Efficient Solar Steam Generation by W18O49@PVA Gels
by Jiefeng Yan, Zhenxing Fang, Jinxing Hu, Yangming Sun, Xinyi Huang, Guannan Zhou, Lu Li, Rui Wang and Yan Chen
Gels 2025, 11(10), 783; https://doi.org/10.3390/gels11100783 - 30 Sep 2025
Viewed by 191
Abstract
Oxygen-deficient tungsten oxide W18O49 was synthesized through lattice oxygen escaping at high temperature in N2 atmosphere. The temperature and inert atmosphere were critical conditions to initiate the lattice oxygen escaping to obtain W18O49. The large [...] Read more.
Oxygen-deficient tungsten oxide W18O49 was synthesized through lattice oxygen escaping at high temperature in N2 atmosphere. The temperature and inert atmosphere were critical conditions to initiate the lattice oxygen escaping to obtain W18O49. The large amount of oxygen vacancies supports its performance in photothermal conversion. The synthesized tungsten oxides were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible absorption spectroscopy (UV-Vis). The composite gel was fabricated by the insertion of oxygen-deficient tungsten oxide into PVA-based gel, which was cross-linked by glutaraldehyde. The PVA-based gel ensures a matched water supply speed with that of the evaporation rate due to its hydrophilic nature. The result of the solar steam generation shows that the W18O49-PVA gel (steam generation rate 2.65 kg m−2 h−1) was faster than that of the pure PVA gel. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

36 pages, 20275 KB  
Article
Development and Physico-Chemical and Antibacterial Characterization of Chromium-Doped Hydroxyapatite in a Chitosan Matrix Coating
by Daniela Predoi, Carmen Steluta Ciobanu, Simona Liliana Iconaru, Roxana Alexandra Petre, Krzysztof Rokosz, Steinar Raaen and Mihai Valentin Predoi
Polymers 2025, 17(19), 2633; https://doi.org/10.3390/polym17192633 - 29 Sep 2025
Viewed by 206
Abstract
Chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings were synthesized in order to address the need for biomaterials with improved physico-chemical and biological properties for biomedical applications. Both chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings could [...] Read more.
Chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings were synthesized in order to address the need for biomaterials with improved physico-chemical and biological properties for biomedical applications. Both chromium-doped hydroxyapatite (7CrHAp) and chromium-doped hydroxyapatite in chitosan matrix (7CrHAp-CH) coatings could represent promising materials for biomedical applications due to their superior properties. This study aims to evaluate the physico-chemical and in vitro biological properties of 7CrHAp and 7CrHAp-CH coatings to determine the impact of chitosan incorporation on the physico-chemical and biological features. The results reported in this study indicate that addition of chitosan improves surface uniformity and biological properties, highlighting their potential for uses in biomedical applications. In this study, coatings of chromium-doped hydroxyapatite (7CrHAp, with xCr = 0.07) and its composite variant embedded in a chitosan matrix (7CrHAp-CH) were systematically analyzed using a suite of characterization techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and metallographic microscopy (MM). The results of the XRD analysis revealed that the average crystal size was 19.63 nm for 7CrHAp and 16.29 nm for 7CrHAp-CH, indicating a decrease in crystallite size upon CH incorporation. The films were synthesized via the dip coating method using stable suspensions, whose stability was assessed through ultrasonic measurements (double-distilled water serving as the reference medium). The values obtained for the stability parameter were 2.59·10−6 s−1 for 7CrHAp, 8.64·10−7 s−1 for 7CrHAp-CH, and 3.14·10−7 s−1 for chitosan (CH). These data underline that all samples are stable: CH is extremely stable, followed by 7CrHAp-CH (very stable) and 7CrHAp (stable). The in vitro biocompatibility of the 7CrHAp and 7CrHAp-CH coatings was evaluated with the aid of the MG63 cell line. The cytotoxic potential of these coatings towards MG63 cells was quantified using the MTT assay after 24 and 48 h of incubation. Our results highlight that both 7CrHAp and 7CrHAp-CH coatings exhibit high biocompatibility with MG63 cells, maintaining cell viability above 90% at both incubation times, thus supporting osteoblast-like cell proliferation. Furthermore, the antimicrobial efficacy of both 7CrHAp and 7CrHAp-CH samples was evaluated in vitro against the Pseudomonas aeruginosa 27853 ATCC (P. aeruginosa) reference strain. The in vitro antibacterial activity of the 7CrHAp and 7CrHAp-CH coatings was further evaluated against Pseudomonas aeruginosa 27853 ATCC (P. aeruginosa), Escherichia coli ATCC 25922 (E. coli) and Staphylococcus aureus ATCC 25923 (S. aureus) reference strains. In addition, atomic force microscopy (AFM) analysis was also used to investigate the ability of P. aeruginosa, E. coli and S. aureus cells to adhere and to develop colonies on the surfaces of the 7CrHAp and 7CrHAp-CH coatings. The results from the biological assays indicate that both coatings exhibit promising antibacterial properties, highlighting their potential for being used in biomedical applications, particularly in the development of novel antimicrobial devices. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Figure 1

14 pages, 3478 KB  
Article
Fabrication of Low-Temperature ppb-Level Ethanol Gas Sensor Based on Hierarchical NiO-SnO2 Nanoflowers Under Hydrothermal Conditions
by Liming Song, Xiaoxin Dou, Jianmei Shao, Yuanzheng Luo, Fumiao Liu, Chengyong Li, Lijuan Yan, Chuhong Wang, Yuting Li, Yuqing Cai, Jinsheng He, Zhenqing Dai, Ruikun Sun and Qin Xie
Nanomaterials 2025, 15(19), 1471; https://doi.org/10.3390/nano15191471 - 25 Sep 2025
Viewed by 189
Abstract
Hierarchical NiO-SnO2 nanoflowers were prepared via a one-step hydrothermal method. The morphology, structure and components of the hierarchical NiO-SnO2 nanoflowers were examined via scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. [...] Read more.
Hierarchical NiO-SnO2 nanoflowers were prepared via a one-step hydrothermal method. The morphology, structure and components of the hierarchical NiO-SnO2 nanoflowers were examined via scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The ethanol gas-sensing performance was systematically analyzed between pure hierarchical SnO2 nanoflowers and the hierarchical NiO-SnO2 nanoflowers. The results indicated that the hierarchical NiO-SnO2 nanoflowers showed better gas-sensing properties than the pure hierarchical SnO2 nanoflowers at 164 °C. The enhanced gas-sensing performance was ascribed to the formation of p-n heterojunctions between p-type NiO and n-type SnO2. Additionally, NiO has a catalytic role. Therefore, hierarchical NiO-SnO2 nanoflowers could be a potential gas-sensing material for the fabrication of high-quality ethanol gas sensors. Full article
(This article belongs to the Special Issue Nanomaterials for Micro/Nano Sensing and Detecting Applications)
Show Figures

Figure 1

20 pages, 19644 KB  
Article
Effect of Support and Polymer Modifier on the Catalytic Performance of Supported Palladium Catalysts in Hydrogenation
by Assemgul S. Auyezkhanova, Eldar T. Talgatov, Sandugash N. Akhmetova, Aigul I. Jumekeyeva, Akzhol A. Naizabayev, Aigul T. Zamanbekova and Makpal K. Malgazhdarova
Molecules 2025, 30(18), 3820; https://doi.org/10.3390/molecules30183820 - 19 Sep 2025
Viewed by 390
Abstract
In this study, we investigated the influence of polymer nature and support characteristics on the performance of Pd-based heterogeneous catalysts. Catalysts were prepared via sequential adsorption of poly(4-vinylpyridine) (P4VP) or chitosan (CS) and palladium ions onto MgO and SBA-15 supports under ambient conditions. [...] Read more.
In this study, we investigated the influence of polymer nature and support characteristics on the performance of Pd-based heterogeneous catalysts. Catalysts were prepared via sequential adsorption of poly(4-vinylpyridine) (P4VP) or chitosan (CS) and palladium ions onto MgO and SBA-15 supports under ambient conditions. The resulting hybrid materials were characterized by IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectra (XPS). TEM analysis revealed that Pd nanoparticles with an average size of 2–3 nm were well-dispersed on P4VP/MgO, while larger and less uniformly distributed particles (8–10 nm) were observed on SBA-15-based systems. Catalytic tests in the hydrogenation of 2-propen-1-ol, phenylacetylene, and 2-hexyn-1-ol under mild conditions (40 °C, 1 atm H2, ethanol) demonstrated that both the support and polymer type significantly influence activity and selectivity. P4VP-modified catalysts outperformed CS-containing analogs in all reactions. MgO-based systems showed higher activity and selectivity in 2-propen-1-ol hydrogenation compared to SBA-15-based catalysts. The 1%Pd–P4VP/MgO catalyst exhibited the best performance, with a reaction rate of 5.2 × 10−6 mol/s, 83.4% selectivity to propanol, and stable activity over 30 consecutive runs. In phenylacetylene and 2-hexyn-1-ol hydrogenation, all catalysts showed high selectivity to styrene (93–95%) and cis-2-hexen-1-ol (96–97%), respectively. The incorporation of P4VP polymer into the Pd/MgO catalyst leads to smaller and better-distributed palladium particles, resulting in enhanced catalytic activity and stability during hydrogenation reactions. These results confirm that the choice of polymer modifier and inorganic support must be tailored to the specific reaction, enabling the design of highly active and selective polymer-modified Pd catalysts for selective hydrogenation processes under mild conditions. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts: From Synthesis to Application)
Show Figures

Figure 1

16 pages, 4464 KB  
Article
Cost-Effective Fabrication of Silica–Silver Microspheres with Enhanced Conductivity for Electromagnetic Interference Shielding
by Mingzheng Hao, Zhonghua Huang, Wencai Wang, Zhaoxia Lv, Tao Zhang, Wenjin Liang and Yurong Liang
Nanomaterials 2025, 15(18), 1433; https://doi.org/10.3390/nano15181433 - 18 Sep 2025
Viewed by 372
Abstract
A green and cost-effective method was employed to efficiently synthesize conductive silica–silver (SiO2/PCPA/Ag) core–shell structured microspheres. The SiO2 microspheres were initially functionalized with poly(catechol-polyamine), followed by the in situ reduction of Ag ions to Ag nanoparticles on the surface of [...] Read more.
A green and cost-effective method was employed to efficiently synthesize conductive silica–silver (SiO2/PCPA/Ag) core–shell structured microspheres. The SiO2 microspheres were initially functionalized with poly(catechol-polyamine), followed by the in situ reduction of Ag ions to Ag nanoparticles on the surface of the SiO2 microspheres using an electroless plating process. Analysis using scanning electron microscopy confirmed the successful formation of a dense and uniform silver layer on the surface of the SiO2 microspheres. The valence state of the silver present on the surface of the SiO2 microspheres was determined to be zero through analyses conducted using an X-ray photoelectron spectrometer and X-ray diffractometer. Consequently, the SiO2/PCPA/Ag microspheres, upon initial preparation, demonstrated a notable conductivity of 1005 S/cm, which was further enhanced to 1612 S/cm following additional heat treatment aimed at rectifying defects within the silver layer. The resulting rubber composites displayed a low electrical resistivity of 5.4 × 10−3 Ω·cm and exhibited a significant electromagnetic interference (EMI) shielding effectiveness exceeding 100 dB against both X-band and Ku-band frequencies, suggesting promising potential for utilization as a material for conducting and EMI shielding purposes. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

17 pages, 6009 KB  
Article
Sensitive and Selective Electrochemical Detection of Hydrogen Peroxide Using a Silver-Incorporated CeO2/Ag2O Nanocomposite
by Gunasekaran Manibalan, Govindhasamy Murugadoss, Dharmalingam Krishnamoorthy, Venkataraman Dharuman and Shaik Gouse Peera
Biosensors 2025, 15(9), 617; https://doi.org/10.3390/bios15090617 - 17 Sep 2025
Viewed by 430
Abstract
Precision and real-time detection of hydrogen peroxide (H2O2) are essential in pharmaceutical, industrial, and defence sectors due to its strong oxidizing nature. In this study, silver (Ag)-doped CeO2/Ag2O-modified glassy carbon electrode (Ag-CeO2/Ag2 [...] Read more.
Precision and real-time detection of hydrogen peroxide (H2O2) are essential in pharmaceutical, industrial, and defence sectors due to its strong oxidizing nature. In this study, silver (Ag)-doped CeO2/Ag2O-modified glassy carbon electrode (Ag-CeO2/Ag2O/GCE) has been developed as a non-enzymatic electrochemical sensor for the sensitive and selective detection of H2O2. The synthesized Ag-doped CeO2/Ag2O nanocomposite was characterized using various advanced techniques, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM). Their optical, magnetic, thermal, and chemical properties were further analyzed using UV–vis spectroscopy, electron paramagnetic resonance (EPR), thermogravimetric-differential thermal analysis (TG-DTA), and X-ray photoelectron spectroscopy (XPS). Electrochemical sensing performance was evaluated using cyclic voltammetry and amperometry. The Ag-CeO2/Ag2O/GCE exhibited superior electrocatalytic activity for H2O2, attributed to the increased number of active sites and enhanced electron transfer. The sensor displayed a high sensitivity of 2.728 µA cm−2 µM−1, significantly outperforming the undoped CeO2/GCE (0.0404 µA cm−2 µM−1). The limit of detection (LOD) and limit of quantification (LOQ) were found to be 6.34 µM and 21.1 µM, respectively, within a broad linear detection range of 1 × 10−8 to 0.5 × 10−3 M. The sensor also demonstrated excellent selectivity with minimal interference from common analytes, along with outstanding storage stability, reproducibility, and repeatability. Owing to these attributes, the Ag-CeO2/Ag2O/GCE sensor proved effective for real sample analysis, showcasing its potential as a reliable, non-enzymatic platform for H2O2 detection. Full article
Show Figures

Figure 1

17 pages, 4863 KB  
Article
Analysis of High Temperature Oxidation Process and Mechanism of Heterogeneous Titanium Alloy
by Xu Pei, Jiacheng Wu, Zhaomei Xu and Pengfei Li
Crystals 2025, 15(9), 810; https://doi.org/10.3390/cryst15090810 - 15 Sep 2025
Viewed by 539
Abstract
This study explores the differences in oxidation color, oxidation products, and high-temperature oxidation resistance between TA1 and Ti-6Al-4V (TC4) titanium alloys following a 50 h oxidation treatment at 450 °C and 750 °C. A combination of analytical techniques—optical microscopy, scanning electron microscopy (SEM), [...] Read more.
This study explores the differences in oxidation color, oxidation products, and high-temperature oxidation resistance between TA1 and Ti-6Al-4V (TC4) titanium alloys following a 50 h oxidation treatment at 450 °C and 750 °C. A combination of analytical techniques—optical microscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and micro-Vickers hardness testing—was employed to characterize the morphology of the oxide layers, elemental distribution, phase composition, and microhardness variations. The results reveal that at 450 °C, both alloys develop relatively compact oxide films. TA1 exhibits a yellow–gray coloration, while TC4 displays a characteristic blue–violet interwoven color. At 750 °C, however, the oxide layers become porous and prone to spallation, with a brown appearance and predominance of TiO2. XPS analysis confirms that Ti4+ (TiO2) is the dominant oxidation state on both alloy surfaces at 750 °C, with TC4 showing a significantly higher content of Al2O3. Microhardness measurements indicate that high-temperature oxidation increases the hardness of both alloys, with TC4 consistently exhibiting higher hardness than TA1. TC4 demonstrates superior oxidation resistance: at 450 °C, it forms a denser oxide layer with lower oxygen uptake, while at 750 °C, its oxide layer thickens more significantly, likely due to increased brittleness and spallation. This study underscores the profound impact of high-temperature oxidation on the microstructure and mechanical properties of titanium alloys and highlights the critical role of oxide layer density and stability in determining oxidation resistance. These findings provide valuable insights for the application of TA1 and Ti-6Al-4V alloys in high-temperature environments. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Properties of Alloys and Composites)
Show Figures

Figure 1

16 pages, 13804 KB  
Article
The Effect of Cobalt Incorporation on the Microstructure and Properties of Cu(Co) Alloys for Use in Hybrid Bonding
by Sarabjot Singh and Kathleen Dunn
Metals 2025, 15(9), 1023; https://doi.org/10.3390/met15091023 - 15 Sep 2025
Viewed by 415
Abstract
In this study, the properties of Cu(Co) alloy films were investigated to assess their utility as an alternative material for interconnections in hybrid bonding applications. Thin films of Cu(Co) were deposited using electrochemical deposition in a standard sulfate-based electrolyte. X-ray photoelectron spectroscopy (XPS) [...] Read more.
In this study, the properties of Cu(Co) alloy films were investigated to assess their utility as an alternative material for interconnections in hybrid bonding applications. Thin films of Cu(Co) were deposited using electrochemical deposition in a standard sulfate-based electrolyte. X-ray photoelectron spectroscopy (XPS) of the films revealed that an increasing current density during deposition resulted in an increase in cobalt concentration. Bright-field scanning transmission electron microscopy (STEM) coupled with energy-dispersive x-ray spectroscopy (EDS) was used to visualize the fine-grained microstructure and confirmed grain boundary segregation of cobalt in the films. X-ray diffraction with a heated stage determined that the coefficient of thermal expansion (CTE) increased linearly with increasing cobalt content, from 17.5 ppm/K for pure copper to a maximum of 27.5 ppm/K for a film containing 24 at.% Co. Nanoindentation experiments found that the mechanical properties depended non-linearly on composition, with hardness increasing from 3.5 GPa for a 0% cobalt film to a maximum of 4.5 GPa (24 at.% Co) and the Young’s modulus increasing from 118 GPa to 214 GPa, respectively. Four-point probe electrical measurements confirmed the expected linear increase in resistivity as Co content increased. Since electrical and mechanical properties have differing dependences on the film composition, an optimal alloy composition that balances an acceptable increase in resistance with improved mechanical properties could enable more reliable, low-temperature bonding solutions in advanced microelectronic devices. Full article
(This article belongs to the Special Issue Solidification and Microstructure of Metallic Alloys)
Show Figures

Figure 1

12 pages, 4882 KB  
Article
Mg-Doped P-Type AlN Thin Film Prepared by Magnetron Sputtering Using Mg-Al Alloy Targets
by Yulin Ma, Xu Wang and Kui Ma
Micromachines 2025, 16(9), 1035; https://doi.org/10.3390/mi16091035 - 10 Sep 2025
Viewed by 505
Abstract
Aluminum nitride (AlN), a III-V wide-bandgap semiconductor, has attracted significant attention for high-temperature and high-power applications. However, achieving p-type doping in AlN remains challenging. In this study, p-type AlN thin films were fabricated via magnetron sputtering using Mg-Al alloy targets with varying Mg [...] Read more.
Aluminum nitride (AlN), a III-V wide-bandgap semiconductor, has attracted significant attention for high-temperature and high-power applications. However, achieving p-type doping in AlN remains challenging. In this study, p-type AlN thin films were fabricated via magnetron sputtering using Mg-Al alloy targets with varying Mg concentrations (0.01 at.%, 0.02 at.%, and 0.5 at.%), followed by ex situ high-temperature annealing to facilitate Mg diffusion and electrical activation. The structural, morphological, and electrical properties of the films were systematically characterized using X-ray diffraction (XRD), white light interferometry (WLI), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Hall effect measurements. The results demonstrate that at a Mg doping concentration of 0.02 at.%, the films exhibit optimal crystallinity, uniform Mg distribution, and a favorable balance between carrier concentration and mobility, resulting in effective p-type conductivity. Increasing Mg doping leads to higher surface roughness and the formation of columnar and conical grain structures. While high Mg doping (0.5 at.%) significantly increases carrier concentration and decreases resistivity, it also reduces mobility due to enhanced impurity and carrier–carrier scattering, negatively impacting hole transport. XPS and EDS analyses confirm Mg incorporation and the formation of Mg-N and Al-Mg bonds. Overall, this study indicates that controlled Mg doping combined with high-temperature annealing can achieve p-type AlN films to a certain extent, though mobility and carrier activation remain limited, providing guidance for the development of high-performance AlN-based bipolar devices. Full article
Show Figures

Figure 1

18 pages, 2238 KB  
Article
Discovery of Novel N-[(dimethylamino)methylene]thiourea (TUFA)-Functionalized Lignin for Efficient Cr(VI) Removal from Wastewater
by Haixin Wang, Tao Shen, Yiming Wang, Zongxiang Lv, Yu Liu, Juan Wu, Tai Li, Shui Wang and Yanguo Shang
Toxics 2025, 13(9), 759; https://doi.org/10.3390/toxics13090759 - 7 Sep 2025
Viewed by 460
Abstract
This study developed a novel adsorbent for Cr (VI) removal from wastewater by grafting N-[(dimethylamino)methylene]thiourea (TUFA) onto lignin. The resulting TUFA-functionalized lignin adsorbent AL was comprehensively characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), and X-ray [...] Read more.
This study developed a novel adsorbent for Cr (VI) removal from wastewater by grafting N-[(dimethylamino)methylene]thiourea (TUFA) onto lignin. The resulting TUFA-functionalized lignin adsorbent AL was comprehensively characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS). Batch adsorption experiments systematically evaluated the influence of solution pH, contact time, temperature, initial Cr (VI) concentration, and adsorbent dosage. AL exhibited high adsorption capacity (593.9 mg g−1 at 40 °C), attributed to its abundant nitrogen and sulfur-containing functional groups. Kinetic analysis revealed that the adsorption process followed pseudo-second-order kinetics. Equilibrium isotherm data were best described by the Langmuir model, indicating predominant monolayer chemisorption. Thermodynamic parameters demonstrated that Cr (VI) adsorption onto AL is spontaneous, endothermic, and entropy-driven. The adsorption mechanism involves membrane diffusion and intra-particle diffusion processes. This work successfully synthesized a stable, effective, and low-cost adsorbent (AL) using an amine agent incorporating both nitrogen and sulfur functional groups, offering a promising approach for treating Cr (VI)-contaminated wastewater. Full article
Show Figures

Graphical abstract

30 pages, 6724 KB  
Article
Electrochemical Behaviour of Nd–Fe–B and Sm–Fe–N Polymer-Bonded Magnets and Their Metal Components in Various Electrolytes
by Nikolina Lešić, Janez Kovač and Ingrid Milošev
Corros. Mater. Degrad. 2025, 6(3), 42; https://doi.org/10.3390/cmd6030042 - 4 Sep 2025
Viewed by 702
Abstract
Polymer-bonded Nd–Fe–B and Sm–Fe–N magnets have excellent magnetic properties, but their corrosion resistance is inferior. Polymer-bonded magnets, the binary alloys Nd–Fe and Sm–Fe, and the metals Fe, Nd, and Sm were investigated in electrolytes with a pH range of 1.8 to 12.8. Potentiodynamic [...] Read more.
Polymer-bonded Nd–Fe–B and Sm–Fe–N magnets have excellent magnetic properties, but their corrosion resistance is inferior. Polymer-bonded magnets, the binary alloys Nd–Fe and Sm–Fe, and the metals Fe, Nd, and Sm were investigated in electrolytes with a pH range of 1.8 to 12.8. Potentiodynamic polarisation measurements showed that these materials corrode in acidic (H2SO4) and near-neutral (Na2SO4 and NaCl) electrolytes. Iron passivates at pH > 9, but Nd and Sm passivate only in strongly alkaline electrolytes (pH > 12). The alloys and magnets combine the characteristics of the individual metals. Scanning electron microscopy with energy-dispersive X-ray spectroscopy characterised the surface layers before and after electrochemical measurements. The speciation and the depth distribution of elements in the surface layers were analysed using X-ray photoelectron spectroscopy. In the H2SO4, a non-protective layer was formed. In NaCl, the corrosion products were more abundant, consisting of a mixture of oxides, hydroxides, and chlorides, while in NaOH, an oxide/hydroxide layer was formed. The corrosion product layers formed in the H2SO4 and NaCl electrolytes were significantly thicker for the Sm–Fe–N magnet than for the Nd–Fe–B magnet. Understanding the differences and similarities in the electrochemical behaviour of magnets in various electrolytes is essential to overcoming corrosion-related problems. Full article
Show Figures

Figure 1

Back to TopTop