Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = sapphire fiber Bragg gratings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5092 KiB  
Article
Design of Real-Time Demodulation for FBG Sensing Signals Based on All-Dielectric Subwavelength Gratings Edge Filters
by Jingliang Lin, Ping Tang, Kaihao Chen, Jiancai Xue, Ziming Meng and Jinyun Zhou
Nanomaterials 2025, 15(7), 536; https://doi.org/10.3390/nano15070536 - 1 Apr 2025
Viewed by 597
Abstract
Accurate real-time temperature measurement under extreme thermal-pressure conditions remains challenging in aerospace. Sapphire fiber Bragg gratings (FBGs), exhibiting temperature measurement capabilities up to 1900 °C, demonstrate suitability for such extreme environments. However, the development of a high-performance demodulation system capable of processing sapphire [...] Read more.
Accurate real-time temperature measurement under extreme thermal-pressure conditions remains challenging in aerospace. Sapphire fiber Bragg gratings (FBGs), exhibiting temperature measurement capabilities up to 1900 °C, demonstrate suitability for such extreme environments. However, the development of a high-performance demodulation system capable of processing sapphire FBG signals over wide spectral ranges at elevated speeds remains a technical challenge. This study presents a real-time FBG signal demodulation system that incorporates an all-dielectric subwavelength grating edge filter. The designed grating, comprising a TiO2/Si3N4 subwavelength unit array, modulates Mie-type electric and magnetic multipole resonances to achieve precisely tailored transmission and reflection spectra. Simulation results indicate that the grating exhibits low ohmic loss, excellent linearity, complementary transmission/reflection characteristics, a wide linear range, and angular-dependent tunability. The designed edge-filter-based demodulation system incorporates dual single-point detectors to simultaneously monitor the transmitted and reflected signals. Leveraging the functional relationship between the center wavelength of the FBG and the detected signals, this system enables high-speed, wide-range interrogation of the center wavelength, thus facilitating real-time demodulation for wide-range temperature sensing. The proposed method and system are validated through theoretical modeling, offering an innovative approach for sapphire FBG signal demodulation under extreme thermal-pressure conditions. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

22 pages, 4043 KiB  
Article
High Temperature Measurement with Low Cost, VCSEL-Based, Interrogation System Using Femtosecond Bragg Gratings
by Konrad Markowski, Juliusz Bojarczuk, Piotr Araszkiewicz, Jakub Ciftci, Adam Ignaciuk and Michał Gąska
Sensors 2022, 22(24), 9768; https://doi.org/10.3390/s22249768 - 13 Dec 2022
Cited by 3 | Viewed by 3851
Abstract
In this article, a cost-effective and fast interrogating system for wide temperature measurement with Fiber Bragg Gratings is presented. The system consists of a Vertical Cavity Surface Emitting Laser (VCSEL) with a High Contrast Grating (HCG)-based cavity that allows for the fast tuning [...] Read more.
In this article, a cost-effective and fast interrogating system for wide temperature measurement with Fiber Bragg Gratings is presented. The system consists of a Vertical Cavity Surface Emitting Laser (VCSEL) with a High Contrast Grating (HCG)-based cavity that allows for the fast tuning of the output wavelength. The work focuses on methods of bypassing the limitations of the used VCSEL laser, especially its relatively narrow tuning range. Moreover, an error analysis is provided by means of the VCSEL temperature instability and its influence on the system performance. A simple proof of concept of the measurement system is shown, where two femtosecond Bragg gratings were used to measure temperature in the range of 25 to 800 °C. In addition, an exemplary simulation of a system with sapphire Bragg gratings is provided, where we propose multiplexation in the wavelength and reflectance domains. The presented concept can be further used to measure a wide range of temperatures with scanning frequencies up to hundreds of kHz. Full article
(This article belongs to the Special Issue Fiber Grating Sensors: Design, Fabrication, and Application)
Show Figures

Figure 1

20 pages, 6695 KiB  
Article
Metrological Characterization of a High-Temperature Hybrid Sensor Using Thermal Radiation and Calibrated Sapphire Fiber Bragg Grating for Process Monitoring in Harsh Environments
by René Eisermann, Stephan Krenek, Tobias Habisreuther, Petra Ederer, Sigurd Simonsen, Helge Mathisen, Tino Elsmann, Frank Edler, Daniel Schmid, Adrian Lorenz and Åge Andreas Falnes Olsen
Sensors 2022, 22(3), 1034; https://doi.org/10.3390/s22031034 - 28 Jan 2022
Cited by 15 | Viewed by 4944
Abstract
Fiber Bragg gratings inscribed in single crystalline multimode sapphire fibers (S-FBG) are suitable for monitoring applications in harsh environments up to 1900 °C. Despite many approaches to optimize the S-FBG sensor, a metrological investigation of the achievable temperature uncertainties is still missing. In [...] Read more.
Fiber Bragg gratings inscribed in single crystalline multimode sapphire fibers (S-FBG) are suitable for monitoring applications in harsh environments up to 1900 °C. Despite many approaches to optimize the S-FBG sensor, a metrological investigation of the achievable temperature uncertainties is still missing. In this paper, we developed a hybrid optical temperature sensor using S-FBG and thermal radiation signals. In addition, the sensor also includes a thermocouple for reference and process control during a field test. We analyzed the influence of the thermal gradient and hotspot position along the sensor for all three detection methods using an industrial draw tower and fixed point cells. Moreover, the signal processing of the reflected S-FBG spectrum was investigated and enhanced to determine the reachable measurement repeatability and uncertainty. For that purpose, we developed an analytical expression for the long-wavelength edge of the peak. Our findings show a higher stability against mechanical-caused mode variations for this method to measure the wavelength shift compared to established methods. Additionally, our approach offers a high robustness against aging effects caused by high-temperature processes (above 1700 °C) or harsh environments. Using temperature-fixed points, directly traceable to the International System of Units, we calibrated the S-FBG and thermocouple of the hybrid sensor, including the corresponding uncertainty budgets. Within the scope of an over 3-weeks-long field trial, 25 production cycles of an industrial silicon manufacturing process with temperatures up to 1600 °C were monitored with over 100,000 single measurements. The absolute calibrated thermocouple (Uk=21K4K) and S-FBG (Uk=210K14K) measurements agreed within their combined uncertainty. We also discuss possible strategies to significantly reduce the uncertainty of the S-FBG calibration. A follow-up measurement of the sensor after the long-term operation at high temperatures and the transport of the measuring system together with the sensor resulted in a change of less than 0.5 K. Thus, both the presented hybrid sensor and the measuring principle are very robust for applications in harsh environments. Full article
(This article belongs to the Special Issue Recent Advances in Fiber Bragg Grating Sensing)
Show Figures

Figure 1

9 pages, 5260 KiB  
Communication
Sapphire-Derived Fiber Bragg Gratings for High Temperature Sensing
by Qi Guo, Zhixu Jia, Xuepeng Pan, Shanren Liu, Zhennan Tian, Zhongming Zheng, Chao Chen, Guanshi Qin and Yongsen Yu
Crystals 2021, 11(8), 946; https://doi.org/10.3390/cryst11080946 - 14 Aug 2021
Cited by 7 | Viewed by 3593
Abstract
In this paper, a sapphire-derived fiber (SDF) with a core diameter of 10 μm and a cladding diameter of 125 μm is fabricated by the melt-in-tube method, and fiber Bragg gratings (FBGs) with reflectivity over 80% are prepared by the femtosecond laser point-by-point [...] Read more.
In this paper, a sapphire-derived fiber (SDF) with a core diameter of 10 μm and a cladding diameter of 125 μm is fabricated by the melt-in-tube method, and fiber Bragg gratings (FBGs) with reflectivity over 80% are prepared by the femtosecond laser point-by-point direct writing method. By analyzing the refractive index distribution and reflection spectral characteristics of the SDF, it can be seen that the SDF is a graded refractive index few-mode fiber. In order to study the element composition of the SDF core, the end-face element distribution of the SDF is analyzed, which indicates that element diffusion occurred between the core and the cladding materials. The temperature and stress of the SDF gratings are measured and the highest temperature is tested to 1000 °C. The temperature and strain sensitivities are 15.64 pm/°C and 1.33 pm/με, respectively, which are higher than the temperature sensitivity of the quartz single-mode fiber. As a kind of special fiber, the SDF expands the application range of sapphire fiber, and has important applications in the fields of high-temperature sensing and high-power lasers. Full article
(This article belongs to the Special Issue Crystalline Fibers and Their Applications)
Show Figures

Figure 1

12 pages, 3212 KiB  
Article
A Strain-Transfer Model of Surface-Bonded Sapphire-Derived Fiber Bragg Grating Sensors
by Penghao Zhang, Li Zhang, Zhongyu Wang, Shuang Chen and Zhendong Shang
Appl. Sci. 2020, 10(12), 4399; https://doi.org/10.3390/app10124399 - 26 Jun 2020
Cited by 5 | Viewed by 2371
Abstract
An improved strain-transfer model was developed for surface-bonded sapphire-derived fiber Bragg grating sensors. In the model, the core and cladding of the fiber are separated into individual layers, unlike in conventional treatment that regards the fiber as a unitive structure. The separation is [...] Read more.
An improved strain-transfer model was developed for surface-bonded sapphire-derived fiber Bragg grating sensors. In the model, the core and cladding of the fiber are separated into individual layers, unlike in conventional treatment that regards the fiber as a unitive structure. The separation is because large shear deformation occurs in the cladding when the core of the sapphire-derived fiber is heavily doped with alumina, a material with a high Young’s modulus. Thus, the model was established to have four layers, namely, a core, a cladding, an adhesive, and a host material. A three-layer model could also be obtained from the regressed four-layer model when the core’s radius increased to that of the cladding, which treated the fiber as if it were still homogeneous material. The accuracy of both the four- and three-layer models was verified using a finite-element model and a tensile-strain experiment. Experiment results indicated that a larger core diameter and a higher alumina content resulted in a lower average strain-transfer rate. Error percentages were less than 1.8% when the four- and three-layer models were used to predict the transfer rates of sensors with high and low alumina content, respectively. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

13 pages, 5896 KiB  
Article
Application of Sapphire-Fiber-Bragg-Grating-Based Multi-Point Temperature Sensor in Boilers at a Commercial Power Plant
by Shuo Yang, Daniel Homa, Hanna Heyl, Logan Theis, John Beach, Billy Dudding, Glen Acord, Dwyn Taylor, Gary Pickrell and Anbo Wang
Sensors 2019, 19(14), 3211; https://doi.org/10.3390/s19143211 - 21 Jul 2019
Cited by 53 | Viewed by 6736
Abstract
Readily available temperature sensing in boilers is necessary to improve efficiencies, minimize downtime, and reduce toxic emissions for a power plant. The current techniques are typically deployed as a single-point measurement and are primarily used for detection and prevention of catastrophic events due [...] Read more.
Readily available temperature sensing in boilers is necessary to improve efficiencies, minimize downtime, and reduce toxic emissions for a power plant. The current techniques are typically deployed as a single-point measurement and are primarily used for detection and prevention of catastrophic events due to the harsh environment. In this work, a multi-point temperature sensor based on wavelength-multiplexed sapphire fiber Bragg gratings (SFBGs) were fabricated via the point-by-point method with a femtosecond laser. The sensor was packaged and calibrated in the lab, including thermally equilibrating at 1200 °C, followed by a 110-h, 1000 °C stability test. After laboratory testing, the sensor system was deployed in both a commercial coal-fired and a gas-fired boiler for 42 days and 48 days, respectively. The performance of the sensor was consistent during the entire test duration, over the course of which it measured temperatures up to 950 °C (with some excursions over 1000 °C), showing the survivability of the sensor in a field environment. The sensor has a demonstrated measurement range from room temperature to 1200 °C, but the maximum temperature limit is expected to be up to 1900 °C, based on previous work with other sapphire based temperature sensors. Full article
Show Figures

Figure 1

11 pages, 2980 KiB  
Article
Single Mode Air-Clad Single Crystal Sapphire Optical Fiber
by Cary Hill, Dan Homa, Zhihao Yu, Yujie Cheng, Bo Liu, Anbo Wang and Gary Pickrell
Appl. Sci. 2017, 7(5), 473; https://doi.org/10.3390/app7050473 - 3 May 2017
Cited by 33 | Viewed by 7433
Abstract
The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm [...] Read more.
The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber with high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications. Full article
(This article belongs to the Special Issue Distributed Optical Fiber Sensors)
Show Figures

Figure 1

Back to TopTop