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Abstract: In this paper, a sapphire-derived fiber (SDF) with a core diameter of 10 µm and a cladding
diameter of 125 µm is fabricated by the melt-in-tube method, and fiber Bragg gratings (FBGs) with
reflectivity over 80% are prepared by the femtosecond laser point-by-point direct writing method.
By analyzing the refractive index distribution and reflection spectral characteristics of the SDF, it
can be seen that the SDF is a graded refractive index few-mode fiber. In order to study the element
composition of the SDF core, the end-face element distribution of the SDF is analyzed, which indicates
that element diffusion occurred between the core and the cladding materials. The temperature and
stress of the SDF gratings are measured and the highest temperature is tested to 1000 ◦C. The
temperature and strain sensitivities are 15.64 pm/◦C and 1.33 pm/µε, respectively, which are higher
than the temperature sensitivity of the quartz single-mode fiber. As a kind of special fiber, the SDF
expands the application range of sapphire fiber, and has important applications in the fields of
high-temperature sensing and high-power lasers.

Keywords: sapphire-derived fiber (SDF); melt-in-tube method; fiber Bragg gratings (FBGs); fem-
tosecond laser

1. Introduction

Optical fiber sensors have important applications in monitoring extreme environ-
mental conditions, such as high temperature, high pressure, strong radiation, and strong
electromagnetic interference [1–3], and most of them use standard quartz single-mode
optical fibers. Limited by the existing low-concentration doped optical fiber, the stability
and mechanical strength of optical fiber devices will deteriorate at higher temperatures [4],
which seriously restricts the application of optical fiber sensors. Therefore, it is necessary
to explore and develop a high-temperature optical fiber with good mechanical properties
in order to achieve a new breakthrough in high-temperature optical fiber sensing.

Single crystal sapphire fiber sensors have always been considered the preferred so-
lution in the field of high-temperature sensing. However, because sapphire fiber has no
cladding and is highly multimodal [5,6], sensor packaging and signal demodulation are
also difficult. For the traditional quartz fiber laser, the further increase in power is mainly
limited by the damage threshold and stimulated Brillouin scattering [7]. Therefore, choos-
ing a material with better thermal performance and smaller Brillouin scattering coefficient
as the gain medium of a fiber laser is an effective way to break the current power limitation
of fiber laser and obtain higher output power. In 2012, John Ballato et al. from Clemson
University proposed and drew sapphire-derived fiber (SDF) for the first time [7]. This kind
of optical fiber is a special optical fiber drawn by a single crystal sapphire rod as the core
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rod and a quartz tube as the sleeve under high-temperature conditions [7]. In the process
of high-temperature drawing, the fused sapphire diffuses with the fused quartz material
to form a high concentration of alumina-doped alumina glass core [8]. By controlling
the parameters of the drawing process, the doping concentration can be adjusted and the
Brillouin gain coefficient can be controlled. Researchers have measured the lowest Brillouin
gain coefficient in the current fibers, and it is also a temperature-independent Brillouin
frequency fiber, which is a Brillouin athermal optical fiber.

In recent years, Pang et al. discovered that when SDF is arc-discharged, mullite crys-
tals will precipitate in the local area of highly doped fiber core. By using this crystallization
effect, the refractive index of the fiber core can be modulated, and the highest refractive
index modulation can reach 0.015. Based on the principle of discharge crystallization, they
prepared a SDF Fabry–Perot (F-P) interference sensor [9,10], a Mach–Zendel (M-Z) inter-
ference sensor [11], and a long period grating sensor [12], which expanded the application
range of SDFs.

Fiber Bragg gratings (FBGs) have important applications in the field of optical fiber
sensing. Generally, FBGs can be prepared in different types of optical fibers by the phase
mask method and the femtosecond laser direct writing method [13–15]. The femtosecond
laser direct writing method has good flexibility and can be used to fabricate gratings of
different periods and types [16–18]. At the same time, a femtosecond laser has an ultra-short
pulse duration and ultra-high peak power [19–21]. Based on the principle of multi-photon
absorption, it can realize the refractive index modulation of different amplitudes inside
the transparent material [22,23] and can realize ultra-fine cold processing. Therefore,
high-temperature resistant fiber gratings can be prepared by femtosecond laser-induced
permanent refractive index changes in different kinds of fibers, which has important
application value in the field of high-temperature fiber sensing [24,25]. In 2014, Tino
Elsmann et al. successfully prepared a SDF with a core diameter of 21 µm and a cladding
diameter of 125 µm, and prepared FBGs using a two-beam phase mask interferometer
system [4]. Because the SDF is drawn by a large-diameter sapphire rod and a quartz tube,
the core diameter is large and the reflection spectrum is highly multimodal. It needs to be
tested by multimode fiber coupling, and the spectral bandwidth will increase, which is not
conducive to high-resolution demodulation.

In this paper, a SDF with a core diameter of 10 µm and a cladding diameter of 125 µm
is fabricated by the melt-in-tube method. The core and cladding diameter of this SDF
are similar to that of a single-mode fiber, and the spectrum can be tested by single-mode
fiber coupling, which improves the demodulation accuracy of the system. In addition, the
515-nm femtosecond laser direct writing system combined with point-by-point method is
used to realize the preparation of FBGs. The end-face element distribution of the SDF is
tested and analyzed by an energy dispersive spectrometer (EDS). The high-temperature
and strain-sensing characteristics of the prepared gratings are studied, and the temperature
sensitivity obtained is higher than that of quartz single-mode fiber. The SDF has good
temperature stability and high temperature resistance, and can be applied in the field of
high-temperature sensing.

2. Preparation and Characterization of SDF

The SDF was prepared by the melt-in-tube method. A single crystal sapphire rod was
used as the core rod of preform rod, and a quartz tube was used as the sleeve. The special
optical fiber was prepared by a fiber-drawing tower at high temperature. Figure 1a shows
the preparation process of the SDF preform rod. The core rod was a single crystal sapphire
rod with a diameter of 450 µm, and the sleeve was a quartz tube with an inner diameter of
500 µm and outer diameter of 10 mm. Figure 1b presents the schematic diagram of the SDF
fabricated by the melt-in-tube method. The preform rod was placed in the fiber-drawing
tower, heated by graphite furnace, and the drawing temperature was about 2100 ◦C. The
drawing speed was accurately controlled by program and motor, and the diameter of SDF
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was measured in real time by a laser diameter-measuring instrument. Figure 1c,d shows
photos of the fiber preform rods before and after drawing.
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state in the core. 

Figure 1. Fabrication of a sapphire-derived fiber (SDF) by the melt-in-tube method. (a) Preparation
process of the fiber preform based on sapphire crystal. (b) Diagram of the SDF drawing process; (c,d)
shows the photos of the fiber preform rods before and after drawing.

Figure 2a shows the micrograph of the end face of the SDF prepared by the melt-
in-tube method. The core diameter is about 10 µm and the cladding diameter is about
125 µm. This is close to the size of a standard single-mode fiber. In addition, since the
cladding material is quartz, it can be fused by optical fiber fusion splicer, which is very
compatible with quartz optical fiber. The end-face refractive index distribution of the SDF
was measured by a fiber end-face refractive index analyzer (SHR-1802, China), and the
wavelength of the test light was 633 nm. The end-face refractive index distribution is
shown in Figure 2b, and the refractive index difference between the core and the cladding
is about 0.06.

Crystals 2021, 11, x FOR PEER REVIEW 3 of 9 
 

 

SDF was measured in real time by a laser diameter-measuring instrument. Figure 1c,d 
shows photos of the fiber preform rods before and after drawing. 

 
Figure 1. Fabrication of a sapphire-derived fiber (SDF) by the melt-in-tube method. (a) Preparation 
process of the fiber preform based on sapphire crystal. (b) Diagram of the SDF drawing process; 
(c,d) shows the photos of the fiber preform rods before and after drawing. 

Figure 2a shows the micrograph of the end face of the SDF prepared by the melt-in-
tube method. The core diameter is about 10 μm and the cladding diameter is about 125 
μm. This is close to the size of a standard single-mode fiber. In addition, since the cladding 
material is quartz, it can be fused by optical fiber fusion splicer, which is very compatible 
with quartz optical fiber. The end-face refractive index distribution of the SDF was meas-
ured by a fiber end-face refractive index analyzer (SHR-1802, China), and the wavelength 
of the test light was 633 nm. The end-face refractive index distribution is shown in Figure 
2b, and the refractive index difference between the core and the cladding is about 0.06. 

 
Figure 2. (a) Micrograph of the SDF end face. (b) Refractive index profile of the SDF. 

The elements in the SDF core area were tested and analyzed by an EDS, which is 
produced by EDAX TEAM company of America. In the EDS surface scanning results 
(shown in Figure 3a), we can see that oxygen, aluminum, and silicon are all present in the 
core. Oxygen is uniformly distributed, and aluminum is mainly distributed in the core. In 
the EDS line scanning results of core position (shown in Figure 3b,c), we can see that the 
content of silicon gradually decreases from both sides to the middle, while the content of 
aluminum element gradually decreases from the center to both sides, and the distribution 
of the two elements is parabolic. The core also contains silicon, and the content of silicon 
in the cladding is obviously higher than that in the core, which indicates that during the 
high-temperature drawing process, the sapphire single crystal melts, and the core and 
cladding materials diffuse, so that aluminum and silicon are in a transitional distribution 
state in the core. 

Figure 2. (a) Micrograph of the SDF end face. (b) Refractive index profile of the SDF.

The elements in the SDF core area were tested and analyzed by an EDS, which is
produced by EDAX TEAM company of America. In the EDS surface scanning results
(shown in Figure 3a), we can see that oxygen, aluminum, and silicon are all present in the
core. Oxygen is uniformly distributed, and aluminum is mainly distributed in the core. In
the EDS line scanning results of core position (shown in Figure 3b,c), we can see that the
content of silicon gradually decreases from both sides to the middle, while the content of
aluminum element gradually decreases from the center to both sides, and the distribution
of the two elements is parabolic. The core also contains silicon, and the content of silicon
in the cladding is obviously higher than that in the core, which indicates that during the
high-temperature drawing process, the sapphire single crystal melts, and the core and
cladding materials diffuse, so that aluminum and silicon are in a transitional distribution
state in the core.
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3. Design Results and Discussion
3.1. FBGs Prepared in SDF

The device for preparing FBGs by the femtosecond laser point-by-point method is
shown in Figure 4a. The femtosecond laser (Light-Conversion Pharos, Lithuania) was
used with a working wavelength of 1030 nm, repetition frequency of 200 kHz, and pulse
width of 290 fs. A frequency doubling crystal (β-BaB2O4) (BBO) was used to double the
frequency of the 1030-nm laser emitted by the laser to obtain a 515 nm laser. A shorter
laser wavelength is conducive to the realization of finer processing. The 515-nm laser was
focused into the center of the SDF core through an oil immersion objective lens (Olympus,
60×/1.42, Japan), and FBGs were prepared by the point-by-point method.
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The FBGs were fabricated in the SDF by using a 515-nm femtosecond laser processing
system. Figure 4b presents a photomicrograph of the FBG prepared in the SDF. Since
the SDF cladding was made of quartz material, the SDF and quartz optical fiber could
be fused together by a fusion splicer to achieve high coupling efficiency. The spectrum
of the SDF was measured by an optical spectrum analyzer (OSA) (Yokogawa AQ6370D,
Japan), supercontinuum light source (NKT Photonics, Denmark), and single-mode fiber
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coupler. Figure 5 shows the reflection and transmission spectra of the prepared FBG. The
FBG phase-matching condition is given by the following formula [26]:

mλB = 2ne f f Λ (1)

where m is the grating order, λB is the wavelength, neff is the effective refractive index, and
Λ is the grating period. The prepared grating order is m = 2, the grating period is 1.055 µm,
the central wavelength of the peak with the maximum reflectivity in the reflection spectrum
is 1549.56 nm, the reflectivity is more than 80%, the full width at half maximum (FWHM)
is 0.3298 nm, and the side-mode suppression ratio (SMSR) is 10 dB. It can be calculated
that the refractive index of the core is about 1.4688 (@1550 nm). It can be seen from the
transmission spectrum that there is some insertion loss in the prepared device. This is
due to the mismatch of mode field diameter between the SDF and quartz single-mode
fiber, and the waveguide defects caused by the preparation of high reflectivity gratings,
which lead to scattering loss. In addition, the core material of the SDF is different from
that of the quartz fiber, which leads to end-face Fresnel reflection loss when splicing at the
interface. There are three reflection peaks in the reflection spectrum, which is mainly due
to the large refractive index difference between the core and cladding of the SDF. Although
the diameter of the core and cladding is close to the parameters of a single-mode fiber, it
still has the characteristics of a few-mode fiber. It can be seen from the refractive index
distribution of the fiber end face and the spectral test results that this SDF is a few-mode
fiber with graded refractive index distribution.
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3.2. SDF Gratings Temperature Testing

In order to test the high-temperature characteristics of the SDF grating, the prepared
FBG was put into a muffle furnace, heated to 1000 ◦C for 2 h, and then cooled to room
temperature. This annealing process was used in order to eliminate the unstable structure
and residual stress during the preparation of FBGs by femtosecond laser. Next, the FBG was
tested from room temperature to 1000 ◦C and the temperature test interval was 100 ◦C. Each
temperature point was kept for 30 min, and 11 temperature points were tested. Figure 6
shows the drift curve of the resonant wavelength of the SDF grating with the change of
temperature and shows the red shift characteristic.
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Figure 7 shows the fitting curve of the wavelength shift and temperature change of
the SDF grating. The temperature sensitivity obtained by linear fitting is 15.64 pm/◦C. A
better fitting effect was obtained through quadratic fitting; the fitting similarity is 0.9997,
and the quadratic fitting function is shown as follows:

Y = 3.41556 × 10−6 X2 + 0.01217 X + 1554.29567 (2)
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3.3. SDF Gratings Strain Testing

The SDF grating was fixed to the stress-testing device (WDW-100, China); the maxi-
mum stress was 1 N, and the test point interval was 0.1 N. The stabilized spectrum was
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recorded by OSA, and Figure 8 shows the shift curve of resonance wavelength with stress
and shows red shift characteristic.
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Axial strain ε can be obtained by the following formula [27]:

ε = F/πr2E (3)

where r is the fiber radius, F is the axial stress, and E is Young’s modulus. Because the main
component of the SDF is quartz, the Young’s modulus here is approximately 73 GPa, which
does not affect the calculation of strain sensitivity. The linear fitting curve of resonance
wavelength and strain is shown in Figure 9, and the strain sensitivity is 1.33 pm/µε.
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by using the surface scanning and line scanning of an EDS. The experimental results show
that in the process of preparing the SDF by the melt-in-tube method, the sapphire single
crystal rod melted and diffused with the fused silica material to form a high-concentration
alumina-doped glass core. The temperature and strain sensitivities of the SDF gratings were
15.64 pm/◦C and 1.33 pm/µε, respectively, which are higher than those of a quartz single-
mode fiber. The SDF demonstrated good high-temperature resistance, with the highest
temperature tested at 1000 ◦C. The melt-in-tube method provides a convenient and direct
research method for customizing optical fibers with different components. In addition, the
new high-alumina content SDF has shown promise as one of the ideal transmission media
for manufacturing enhanced fiber sensors and high-power fiber lasers.
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