Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = salinity-affected coastal aquifer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4061 KiB  
Article
The Impact of Hydrogeological Properties on Mass Displacement in Aquifers: Insights from Implementing a Mass-Abatement Scalable System Using Managed Aquifer Recharge (MAR-MASS)
by Mario Alberto Garcia Torres, Alexandra Suhogusoff and Luiz Carlos Ferrari
Water 2025, 17(15), 2239; https://doi.org/10.3390/w17152239 - 27 Jul 2025
Viewed by 313
Abstract
This study examines the use of a mass-abatement scalable system with managed aquifer recharge (MAR-MASS) as a sustainable solution for restoring salinized aquifers and improving water quality by removing dissolved salts. It offers a practical remediation approach for aquifers affected by salinization in [...] Read more.
This study examines the use of a mass-abatement scalable system with managed aquifer recharge (MAR-MASS) as a sustainable solution for restoring salinized aquifers and improving water quality by removing dissolved salts. It offers a practical remediation approach for aquifers affected by salinization in coastal regions, agricultural areas, and contaminated sites, where variable-density flow poses a challenge. Numerical simulations assessed hydrogeological properties such as hydraulic conductivity, anisotropy, specific yield, mechanical dispersion, and molecular diffusion. A conceptual model integrated hydraulic conditions with spatial and temporal discretization using the FLOPY API for MODFLOW 6 and the IFM API for FEFLOW 10. Python algorithms were run within the high-performance computing (HPC) server, executing simulations in parallel to efficiently process a large number of scenarios, including both preprocessing input data and post-processing results. The study simulated 6950 scenarios, each modeling flow and transport processes over 3000 days of method implementation and focusing on mass extraction efficiency under different initial salinity conditions (3.5 to 35 kg/m3). The results show that the MAR-MASS effectively removed salts from aquifers, with higher hydraulic conductivity prolonging mass removal efficiency. Of the scenarios, 88% achieved potability (0.5 kg/m3) in under five years; among these, 79% achieved potability within two years, and 92% of cases with initial concentrations of 3.5–17.5 kg/m3 reached potability within 480 days. This study advances scientific knowledge by providing a robust model for optimizing managed aquifer recharge, with practical applications in rehabilitating salinized aquifers and improving water quality. Future research may explore MAR-MASS adaptation for diverse hydrogeological contexts and its long-term performance. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

23 pages, 6122 KiB  
Article
Decoding Salinization Dynamics in Mediterranean Coastal Aquifers: A Case Study from a Wetland in Southern Italy
by Giuseppe Passarella, Rita Masciale, Matia Menichini, Marco Doveri and Ivan Portoghese
Environments 2025, 12(7), 227; https://doi.org/10.3390/environments12070227 - 2 Jul 2025
Viewed by 558
Abstract
This study investigates the salinization processes affecting the coastal aquifer within the Torre Guaceto State Nature Reserve, a Mediterranean coastal area characterized by a unique ecological value of a brackish wetland threatened by water-intensive agricultural activities. Groundwater salinization threatens biodiversity, agriculture, and water [...] Read more.
This study investigates the salinization processes affecting the coastal aquifer within the Torre Guaceto State Nature Reserve, a Mediterranean coastal area characterized by a unique ecological value of a brackish wetland threatened by water-intensive agricultural activities. Groundwater salinization threatens biodiversity, agriculture, and water resource sustainability. This work integrates hydrogeological monitoring, geochemical and isotopic analyses, and geophysical surveys to understand salinity dynamics and identify key drivers, such as seawater intrusion, irrigation practices, and climate change. Data collected during monitoring campaigns from 2022 to 2024 reveal significant seasonal and spatial variations in groundwater salinity influenced by natural and human-induced factors. The results indicate that salt recycling from irrigation and marine spray deposition are important local contributors to groundwater salinity, in addition to seawater intrusion. These findings highlight the urgent need for integrated groundwater management approaches considering the combined effects of agricultural practices, irrigation water quality, and climate variability tailored to Mediterranean coastal ecosystems. Full article
Show Figures

Figure 1

16 pages, 5939 KiB  
Article
Modeling the Effects of Underground Brine Extraction on Shallow Groundwater Flow and Oilfield Fluid Leakage Pathways in the Yellow River Delta
by Jingang Zhao, Xin Yuan, Hu He, Gangzhu Li, Qiong Zhang, Qiyun Wang, Zhenqi Gu, Chenxu Guan and Guoliang Cao
Water 2025, 17(13), 1943; https://doi.org/10.3390/w17131943 - 28 Jun 2025
Viewed by 397
Abstract
The distribution of fresh and salty groundwater is a critical factor affecting the coastal wetlands. However, the dynamics of groundwater flow and salinity in river deltas remain unclear due to complex hydrological settings and impacts of human activities. The uniqueness of the Yellow [...] Read more.
The distribution of fresh and salty groundwater is a critical factor affecting the coastal wetlands. However, the dynamics of groundwater flow and salinity in river deltas remain unclear due to complex hydrological settings and impacts of human activities. The uniqueness of the Yellow River Delta (YRD) lies in its relatively short formation time, the frequent salinization and freshening alternation associated with changes in the course of the Yellow River, and the extensive impacts of oil production and underground brine extraction. This study employed a detailed hydrogeological modeling approach to investigate groundwater flow and the impacts of oil field brine leakage in the YRD. To characterize the heterogeneity of the aquifer, a sediment texture model was constructed based on a geotechnical borehole database for the top 30 m of the YRD. A detailed variable-density groundwater model was then constructed to simulate the salinity distribution in the predevelopment period and disturbance by brine extraction in the past decades. Probabilistic particle tracking simulation was implemented to assess the alterations in groundwater flow resulting from brine resource development and evaluate the potential risk of salinity contamination from oil well fields. Simulations show that the limited extraction of brine groundwater has significantly altered the hydraulic gradient and groundwater flow pattern accounting for the less permeable sediments in the delta. The vertical gradient increased by brine pumping has mitigated the salinization process of the shallow groundwater which supports the coastal wetlands. The low groundwater velocity and long travel time suggest that the peak salinity concentration would be greatly reduced, reaching the deep aquifers accounting for dispersion and dilution. Further detailed investigation of the complex groundwater salinization process in the YRD is necessary, as well as its association with alternations in the hydraulic gradient by brine extraction and water injection/production in the oilfield. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

28 pages, 6148 KiB  
Article
The Utilization of a 3D Groundwater Flow and Transport Model for a Qualitative Investigation of Groundwater Salinization in the Ca Mau Peninsula (Mekong Delta, Vietnam)
by Tran Viet Hoan, Karl-Gerd Richter, Felix Dörr, Jonas Bauer, Nicolas Börsig, Anke Steinel, Van Thi Mai Le, Van Cam Pham, Don Van Than and Stefan Norra
Hydrology 2025, 12(5), 126; https://doi.org/10.3390/hydrology12050126 - 20 May 2025
Viewed by 686
Abstract
The Ca Mau Peninsula (CMP), the southernmost region of the Mekong Delta, is increasingly threatened by groundwater salinization, posing severe risks to both the freshwater supply and land sustainability. This study develops a three-dimensional, density-dependent groundwater flow and salinity transport model to investigate [...] Read more.
The Ca Mau Peninsula (CMP), the southernmost region of the Mekong Delta, is increasingly threatened by groundwater salinization, posing severe risks to both the freshwater supply and land sustainability. This study develops a three-dimensional, density-dependent groundwater flow and salinity transport model to investigate salinization dynamics across the CMP’s complex multi-aquifer system. Unlike previous studies that largely rely on model calibration, this research introduces a novel approach by systematically deriving the spatial distribution of longitudinal dispersivity based on sediment characteristics. Moreover, detailed land use mapping is integrated to assign spatially and temporally variable Total Dissolved Solids (TDS) values to the uppermost layers, thereby enhancing the model realism in areas where monitoring data are limited. The model was utilized not only to simulate the regional salinity evolution, but also to critically evaluate conceptual hypotheses related to the mechanisms driving groundwater salinization. Results reveal a strong influence of seasonal and land use factors on salinity variability in the upper aquifers, while deeper aquifers remain largely stable, affected primarily by paleosalinity and localized pumping. This integrated modeling approach contributes to a better understanding of regional-scale groundwater salinization and highlights both the potential and the limitations of numerical modeling under data-scarce conditions. The findings provide a valuable scientific basis for adaptive water resource management in vulnerable coastal zones. Full article
(This article belongs to the Topic Advances in Hydrogeological Research)
Show Figures

Figure 1

25 pages, 6907 KiB  
Article
Geoenvironmental Effects of the Hydric Relationship Between the Del Sauce Wetland and the Laguna Verde Detritic Coastal Aquifer, Central Chile
by Blanca Gana, José Miguel Andreu Rodes, Paula Díaz, Agustín Balboa, Sebastián Frías, Andrea Ávila, Cecilia Rivera, Claudio A. Sáez and Céline Lavergne
Hydrology 2024, 11(10), 174; https://doi.org/10.3390/hydrology11100174 - 16 Oct 2024
Cited by 2 | Viewed by 2179
Abstract
In the central region of Chile, the Mega-Drought together with the demographic increase near the coast threatens groundwater availability and the hydrogeological functioning of coastal wetlands. To understand the hydric relationship between an aquifer and a wetland in a semi-arid coastal region of [...] Read more.
In the central region of Chile, the Mega-Drought together with the demographic increase near the coast threatens groundwater availability and the hydrogeological functioning of coastal wetlands. To understand the hydric relationship between an aquifer and a wetland in a semi-arid coastal region of Central Chile (Valparaíso, Chile), as well as its geoenvironmental effects, four data collection campaigns were conducted in the wetland–estuary hydric system and surroundings, between 2021 and 2022, including physical, hydrochemical, and isotopic analyses in groundwater (n = 16 sites) and surface water (n = 8 sites). The results generated a conceptual model that indicates a hydraulic connection between the wetland and the aquifer, where the water use in one affects the availability in the other. With an average precipitation of 400 mm per year, the main recharge for both systems is rainwater. Three specific sources of pollution were identified from anthropic discharges that affect the water quality of the wetland and the estuary (flow from sanitary landfill, agricultural and livestock industry, and septic tank discharges in populated areas), exacerbated by the infiltration of seawater laterally and superficially through sandy sediments and the estuary, increasing salinity and electrical conductivity in the coastal zone (i.e., 3694 µS/cm). The Del Sauce subbasin faces strong hydric stress triggered by the poor conservation state of the riparian–coastal wetland and groundwater in the same area. This study provides a detailed understanding of hydrological interactions and serves as a model for understanding the possible effects on similar ecosystems, highlighting the need for integrated and appropriate environmental management. Full article
Show Figures

Figure 1

24 pages, 9895 KiB  
Article
Dynamics of Saltwater Intrusion in a Heterogeneous Coastal Environment: Experimental, DC Resistivity, and Numerical Modeling Approaches
by Prarabdh Tiwari, R Rupesh, Shashi Prakash Sharma and Jakub Ciazela
Water 2024, 16(14), 1950; https://doi.org/10.3390/w16141950 - 10 Jul 2024
Cited by 1 | Viewed by 2714
Abstract
Saltwater intrusion (SWI) is a critical concern affecting coastal groundwater sources due to natural and anthropogenic activities. The health of coastal aquifers is deteriorated by excessive SWI, mainly caused by the disturbance of the freshwater–saltwater equilibrium due to the escalating population, climate change, [...] Read more.
Saltwater intrusion (SWI) is a critical concern affecting coastal groundwater sources due to natural and anthropogenic activities. The health of coastal aquifers is deteriorated by excessive SWI, mainly caused by the disturbance of the freshwater–saltwater equilibrium due to the escalating population, climate change, and the rising demand for freshwater resources for human activities. Therefore, gaining insight into the dynamics of SWI is crucial, particularly concerning the various factors that influence the intrusion mechanism. The present study focuses on the experimental simulation of saltwater in freshwater aquifers, considering boundary conditions and density-dependent effects. Two geological scenarios within coastal environments were investigated: First, a uniform, homogeneous case consisting of only sand, and second, a heterogeneous case in which layers of sand, clay, and sand mixed with pebbles are used. During the experiment, DC resistivity sounding data, as part of a widely recognized geophysical method, were collected and subsequently inverted to determine the depth of the freshwater–saltwater interface (FSWI). A finite element analysis was employed to generate numerical models based on experimental feedback. Further, for validation purposes, electrical resistivity tomography (ERT) data were collected from two distinct locations: near the seacoast and an aquaculture area. The ERT results show the presence of salinity intrusion in the study area, attributed mainly to groundwater overpumping and fish farming practices. The experimental findings indicate that the advancement of saltwater is affected by the geological properties of the media they traverse. The porosity (ϕ) and permeability (k) of the geological layer play a crucial role during the passage of saltwater flux into freshwater aquifers. The FSWI deviated along the clay boundary and hindered the easy passage of saltwater into surrounding layers. The alignment of experimental, numerical, and geophysical data suggests that this integrated approach could be valuable for studying SWI and can be applied in different geological settings, including tidal flats and alluvial plains. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology)
Show Figures

Figure 1

28 pages, 3320 KiB  
Review
Global Investigations of Seawater Intrusion (SWI) in Coastal Groundwaters in the Last Two Decades (2000–2020): A Bibliometric Analysis
by Muthukumar Perumal, Selvam Sekar and Paula C. S. Carvalho
Sustainability 2024, 16(3), 1266; https://doi.org/10.3390/su16031266 - 2 Feb 2024
Cited by 17 | Viewed by 6204
Abstract
Seawater intrusion represents the flow of seawater through coastal aquifers, but it also affects surface water bodies such as channels, canals, and wetlands. Transitional water volumes, variable density and salinity distributions, and heterogeneous hydraulic properties describe coastal aquifers which are present in complex [...] Read more.
Seawater intrusion represents the flow of seawater through coastal aquifers, but it also affects surface water bodies such as channels, canals, and wetlands. Transitional water volumes, variable density and salinity distributions, and heterogeneous hydraulic properties describe coastal aquifers which are present in complex environments. The relationships between water density and salinity, climatic variations, groundwater pumps, and sea level fluctuations provide complex hydrological conditions related to the distribution of dissolved salts. This review will focus on (i) systematic evaluation of global SWI areas assessed by different methodologies and author contributions, (ii) SWI identified areas across the world using publication results, and (iii) bibliometric analysis of SWI publications for evaluation of the current status in coastal zone management, including the research gaps that are published in the Journal of Hydrology (5.91%), Environmental Geology (3.41%), Hydrogeology Journal (3.20%), Science of the Total Environment (1.60%), Water Resources Research (1.50%), Arabian Journal of Geosciences (1.30%), Environmental Earth Sciences (1.20%), Advances in Water Resources (1.10%), Applied Geochemistry (1.10%), Water Resources Management (1.0%), and Hydrological Processes (0.8%), a collection representing 30.59% (94 articles) of the total peer-reviewed scientific products of the past two decades focusing on the use of the present status of SWI in coastal aquifers, estuaries, and lagoons. Full article
(This article belongs to the Special Issue Water System Pollution: Monitoring and Control)
Show Figures

Figure 1

18 pages, 27431 KiB  
Article
Impacts of Tidal Oscillations on Coastal Groundwater System in Reclaimed Land
by Jing Guo, Ye Ma, Chao Ding, Huawen Zhao, Zhixin Cheng, Guanxi Yan and Zaijin You
J. Mar. Sci. Eng. 2023, 11(10), 2019; https://doi.org/10.3390/jmse11102019 - 20 Oct 2023
Cited by 9 | Viewed by 3465
Abstract
The impact of tidal oscillations on groundwater in coastal reclamation land demonstrates the complex hydrodynamic interaction between seawater and coastal hydrological aquifer systems. The tidal action not only affects the temporal variability of groundwater levels but also exerts a significant influence on the [...] Read more.
The impact of tidal oscillations on groundwater in coastal reclamation land demonstrates the complex hydrodynamic interaction between seawater and coastal hydrological aquifer systems. The tidal action not only affects the temporal variability of groundwater levels but also exerts a significant influence on the groundwater gradients of salinity within the subsurface aquifers. This study takes the Songmu Area as an example to investigate this ocean–groundwater interaction. Songmu Area is located on a peninsula with coastal land reclamation in Dalian, China. Field campaigns were conducted in this area to measure the tidal action and groundwater parameters in a coastal reclaimed area at artificial backfill layers with pressure and salinity sensors, where the tidal signal can influence groundwater levels and salinity up to a one-kilometer range of inland. Tidal changes in the surface of the sea can be broken down into a number of simple, regular harmonic vibrations, each of which is called a tidal split. The tide and groundwater data were extracted using an enhanced harmonic analysis method. The fluctuations of groundwater levels and salinity were decomposed in response to the periodic tidal oscillation. Various constituents of tide attenuation in the coastal groundwater system were investigated. Our research shows that there is an exponential reduction in the fluctuating amplitude of groundwater levels and the groundwater salinity as distance further inland from the coast. The constituents of tide M2 (the period is 12.42 h of semi-diurnal tides, S2 (the period is 12.00 h of semi-diurnal tides), K1 (the period is 23.93 h of full-diurnal tides), and O1 (the period is 25.82 h of full-diurnal tides) behave differently for the tidal wave propagation and salinity variability in the coastal aquifer of reclaimed land. Among those constituents, M2 and S2 exhibit a higher degree of attenuation compared with K1 and O1. Understanding the relationship between groundwater levels and tidal fluctuations in coastal backfill areas is crucial for effective groundwater management strategies and mitigating the adverse impacts of seawater intrusion. This study can serve as a good understanding for assessing the impacts of various mitigation strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 5919 KiB  
Article
Coupled Geophysical and Hydrogeochemical Characterization of a Coastal Aquifer as Tool for a More Efficient Management (Torredembarra, Spain)
by Alex Sendrós, Ingrid J. Cubides, Mahjoub Himi, Raúl Lovera, Aritz Urruela, Josefina C. Tapias, Lluís Rivero, Ruben Garcia-Artigas and Albert Casas
Water 2023, 15(19), 3333; https://doi.org/10.3390/w15193333 - 22 Sep 2023
Cited by 2 | Viewed by 1726
Abstract
The aquifers of the Spanish Mediterranean coast are generally subjected to intense exploitation to meet the growing water supply demands. The result of the exploitation is salinization due to the marine saltwater intrusion, causing a deterioration in the quality of the water pumped, [...] Read more.
The aquifers of the Spanish Mediterranean coast are generally subjected to intense exploitation to meet the growing water supply demands. The result of the exploitation is salinization due to the marine saltwater intrusion, causing a deterioration in the quality of the water pumped, limiting its use for community needs, and not always being well delimited. To prevent deterioration, a groundwater control network usually allows precise knowledge of the areas affected by saltwater intrusion but not the extent of the saline plumes. Moreover, the characterization of aquifer systems requires a model that defines the geometry of aquifer formations. For this objective, we integrated hydrogeological, hydrogeochemical, and electrical resistivity subsoil data to establish a hydrogeological model of the coastal aquifer of Torredembarra (Tarragona, NE Spain). In this research, we have carried out a regional and local-scale study of the aquifer system to define the areas prone to being affected by saline intrusion (electrical resistivity values below 10 Ω·m). The obtained results could be used as a support tool for the assessment of the most favorable areas for groundwater withdrawal, as well as enabling the control and protection of the most susceptible areas to be affected by saltwater intrusion. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology)
Show Figures

Figure 1

17 pages, 4518 KiB  
Article
A Framework to Assess Natural Chloride Background in Coastal Aquifers Affected by Seawater Intrusion in Eastern Spain
by Juan Grima-Olmedo, Bruno Ballesteros-Navarro, David Pulido-Velazquez, Arianna Renau-Pruñonosa, Francisco Javier Alcalá, Carlos Llopis-Albert, Pablo Jiménez-Gavilán, Nikolay Milkov-Ivanov, Leticia Baena-Ruiz and Carlos Grima-Olmedo
Water 2023, 15(15), 2728; https://doi.org/10.3390/w15152728 - 28 Jul 2023
Cited by 2 | Viewed by 1809
Abstract
The protection of groundwater resources in coastal aquifers is an increasingly important issue worldwide. To establish threshold values and remediation objectives, it is essential to know the natural background concentrations of relevant ions in groundwater. The rationale is to define the Natural Background [...] Read more.
The protection of groundwater resources in coastal aquifers is an increasingly important issue worldwide. To establish threshold values and remediation objectives, it is essential to know the natural background concentrations of relevant ions in groundwater. The rationale is to define the Natural Background Level (NBL) of chemical species determined by atmospheric and lithological forces. In many coastal aquifers, this evaluation worsens since atmospheric and lithological salinity combines with many other anthropogenic sources of salinity, including exogenous salinity induced by seawater intrusion (SWI). This paper presents a combination of six well-known statistical techniques and a new methodology (i.e., SITE index) in eight GWBs affected by SWI in Eastern Spain. The chloride ion was the selected conservative chemical specie to assess the qualitative status due to the variable SWI affection. The Natural Chloride Background (NCB) obtained from these methodologies at the GWB scale was compared with regional NCB data calculated with the Atmospheric Chloride Mass Balance (CMB) method in Continental Spain. The CMB method provides atmospherically derived NCB data that are not influenced by SWI or anthropogenic activities or lithological forces. This external evaluation can be considered the atmospheric fraction of NCB, which serves as a regional criterion to validate the more detailed statistical methodologies applied at the GWB scale. As a result, a conceptualization of NCB is obtained by means of a range of values between 115 mg L−1 and 261 mg L−1 in the studied coastal GWBs affected by SWI in Eastern Spain. Full article
Show Figures

Figure 1

28 pages, 11296 KiB  
Article
The Assessment of the Groundwater Quality in the Coastal Aquifers of the Essaouira Basin, Southwestern Morocco, Using Hydrogeochemistry and Isotopic Signatures
by Otman El Mountassir and Mohammed Bahir
Water 2023, 15(9), 1769; https://doi.org/10.3390/w15091769 - 5 May 2023
Cited by 17 | Viewed by 4220
Abstract
Because of anthropogenic activity and seawater intrusion, coastal aquifers worldwide frequently face a threat to their water supply due to salinization. This paper investigates the assessment of the groundwater quality in coastal aquifers of the Hauturivien aquifer in the Essaouira basin. In this [...] Read more.
Because of anthropogenic activity and seawater intrusion, coastal aquifers worldwide frequently face a threat to their water supply due to salinization. This paper investigates the assessment of the groundwater quality in coastal aquifers of the Hauturivien aquifer in the Essaouira basin. In this study, 56 groundwater samples collected from the Hauturivian aquifer across four campaigns in 2017, 2018, 2019, and 2020 were subjected to multivariate analyses involving principal component analysis (PCA) and cluster analysis (CA) using SPSS software. Among the three main water types, the mixed Ca-Mg-Cl classification was predominant in the investigated aquifer. In addition to the natural processes (such as the water–rock interaction, ion exchange, dissolution/precipitation dynamics, and evaporation) that govern groundwater quality, current land use practices have increased salinization in this poorly drained semi-arid area. Based on assessments using Water Quality Index (WQI) and Irrigation Water Quality Index (IWQI), the water quality is suitable for human consumption, but its use for irrigation is limited to crops that can tolerate high salt levels. The stable isotopes (δ2H and δ18O) of groundwater demonstrated that local precipitation is the primary recharge source. Nonetheless, the evaporation process, influenced by various geological conditions, affects groundwater recharge, regardless of the topographical differences in the study area. Full article
Show Figures

Figure 1

17 pages, 5390 KiB  
Article
Comparative Study of Microbial Diversity in Different Coastal Aquifers: Determining Factors
by María del Carmen Vargas-García, Fernando Sola and Ángela Vallejos
Water 2023, 15(7), 1337; https://doi.org/10.3390/w15071337 - 28 Mar 2023
Cited by 9 | Viewed by 3169
Abstract
Coastal aquifers have been extensively studied from the hydrodynamic and geochemical points of view, but there is still a significant gap in the knowledge of their microbial diversity. The bacterial communities of four coastal aquifers at different depths and salinities were studied in [...] Read more.
Coastal aquifers have been extensively studied from the hydrodynamic and geochemical points of view, but there is still a significant gap in the knowledge of their microbial diversity. The bacterial communities of four coastal aquifers at different depths and salinities were studied in order to infer the anthropogenic and physico-chemical influences on groundwater microbiota. At the physico-chemical level, samples from different aquifers, but with similar salinities, are more similar than those taken within the same aquifer. The microbial community at the phylum level shows the dominance of Proteobacteria, Firmicutes, and Actinobacteria. Samples from the same aquifer, although having very different salinities, are more similar than samples with similar physico-chemical characteristics. Therefore, the taxa present in these media are resilient to environmental variations. The aquifer preserving the most pristine conditions harbors the lowest values of biodiversity, compared to those affected by anthropic activities. The incorporation of pollutants into the aquifer favors the development of a so-called “rare biosphere”, consisting of a high number of taxa which represent a low percentage (<1%) of the total microbial community. The analysis of microbial biodiversity in a coastal aquifer could be used as an indicator of the degree of anthropic alteration. Full article
Show Figures

Figure 1

15 pages, 2809 KiB  
Case Report
A Numerical Approach to Evaluating Groundwater Vulnerability to Seawater Intrusion on Jeju Volcanic Island, South Korea
by Dongyeop Lee, Jonghoon Park, Hyun A. Lee and Nam C. Woo
Sustainability 2023, 15(4), 3081; https://doi.org/10.3390/su15043081 - 8 Feb 2023
Cited by 7 | Viewed by 2466
Abstract
Seawater intrusion (SWI) is a critical issue for coastal aquifers, especially in islands where groundwater is the sole source of water supply. The objective of this study was to develop a straightforward approach to evaluating groundwater vulnerability to SWI, using a statistical method [...] Read more.
Seawater intrusion (SWI) is a critical issue for coastal aquifers, especially in islands where groundwater is the sole source of water supply. The objective of this study was to develop a straightforward approach to evaluating groundwater vulnerability to SWI, using a statistical method with spatial analyses applied to the four basins of Jeju volcanic island. In this study, five factors were parametrized, including hydraulic conductivity, groundwater level, distance from shoreline to wells, well depth and groundwater use. These parameters were spatially interpolated and correlated with groundwater electrical conductivity as a proxy for groundwater salinization, resulting in three parameters with significant relations: groundwater use, well depth, and groundwater level. Then, a numerical model for the SWI vulnerability assessment was constructed using ratings and weights, and by evaluating the vulnerability as weak, moderate and high with a numerical index. Regional conditions, including major land-use types, industrial activities, population and the degree of urbanisation, could affect parameters differently at each region. Based on the percentage of area with a high vulnerability, regions of Jeju Island followed the order of eastern > northern > western > southern, indicating that preventive measures for SWI and its influencing parameters could be applied more effectively in certain regions. Full article
Show Figures

Figure 1

23 pages, 7041 KiB  
Article
Delineation of Salinization and Recharge Sources Affecting Groundwater Quality Using Chemical and Isotopic Indices in the Northwest Coast, Egypt
by Hesham A. Ezzeldin
Sustainability 2022, 14(24), 16923; https://doi.org/10.3390/su142416923 - 16 Dec 2022
Cited by 6 | Viewed by 2428
Abstract
Salinization of coastal aquifers is a serious issue affected by climate change and enhanced by overexploitation of groundwater resources. This research aims to explore the hydrogeochemical processes that cause salinization of groundwater in coastal aquifers, such as the area located between Barrani and [...] Read more.
Salinization of coastal aquifers is a serious issue affected by climate change and enhanced by overexploitation of groundwater resources. This research aims to explore the hydrogeochemical processes that cause salinization of groundwater in coastal aquifers, such as the area located between Barrani and Baqbaq, on the northwestern coast of Egypt. Various techniques were applied, including Gibbs plots and hydrochemical facies diagrams (HFE-D), ion ratios and stable isotope bivariate plots, statistical analyses, a groundwater quality index for seawater intrusion (GQISWI), and a seawater mixing index (SMI). Based on the total dissolved solids (TDS), groundwater can be classified into four groups: slightly saline (9%), moderately saline (45%), highly saline (43%), and salty water (3%). The geochemical properties were further catergorized on the basis of other parameters and ion ratios, such as Caexcess, Nadeficit, Na/Cl, Cl/HCO3, and Br/Cl, which suggest the influence of cation exchange, seawater, and marine sediment dissolution. Additionally, stable isotopes indicated two groups. One of these has relatively high salinity and low isotopic content and is affected by the leaching and dissolution of marine deposits. The other group is enriched in δ18O and δD content, with much higher salinity due to mixing with seawater and evaporation. The GQISWI categorizes groundwater as saline and mixed (55 and 41%, respectively), followed by saltwater (4%), whereas the SMI calculations indicate that about 10% of the groundwater samples are impacted by seawater. Finally, the areal distribution of GQISWI and SMI identified some patches along the coastline as well as other inland places located about 12.5 km away from the sea that have undergone saltwater intrusion. In conclusion, overexploitation of groundwater should be avoided because the amount of annual rainfall is very limited. Full article
Show Figures

Figure 1

28 pages, 7466 KiB  
Article
Salinity and Temperature Variations near the Freshwater-Saltwater Interface in Coastal Aquifers Induced by Ocean Tides and Changes in Recharge
by Angela M. Blanco-Coronas, Maria L. Calvache, Manuel López-Chicano, Crisanto Martín-Montañés, Jorge Jiménez-Sánchez and Carlos Duque
Water 2022, 14(18), 2807; https://doi.org/10.3390/w14182807 - 9 Sep 2022
Cited by 11 | Viewed by 5713
Abstract
The temperature distribution of shallow sectors of coastal aquifers are highly influenced by the atmospheric temperature and recharge. However, geothermal heat or vertical fluxes due to the presence of the saline wedge have more influence at deeper locations. In this study, using numerical [...] Read more.
The temperature distribution of shallow sectors of coastal aquifers are highly influenced by the atmospheric temperature and recharge. However, geothermal heat or vertical fluxes due to the presence of the saline wedge have more influence at deeper locations. In this study, using numerical models that account for variable density, periodic oscillations of temperature have been detected, and their origin has been attributed to the influence exerted by recharge and tides. The combined analysis of field data and numerical models showed that the alternation of dry and wet periods modifies heat distribution in deep zones (>100 m) of the aquifer. Oscillations with diurnal and semidiurnal frequencies have been detected for groundwater temperature, but they show differences in terms of amplitudes and delay with electrical conductivity (EC). The main driver of the temperature oscillations is the forward and backward displacement of the freshwater–saltwater interface, and the associated thermal plume generated by the upward flow from the aquifer basement. These oscillations are amplified at the interfaces between layers with different hydraulic conductivity, where thermal contours are affected by refraction. Full article
(This article belongs to the Special Issue Modelling Contaminant Transport and Natural Groundwater Quality)
Show Figures

Figure 1

Back to TopTop