Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = room and pillar mining system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11716 KiB  
Article
Discrete Fracture Network (DFN) as an Effective Tool to Study the Scale Effects of Rock Quality Designation Measurements
by Rongzhen Wang and Davide Elmo
Appl. Sci. 2024, 14(16), 7101; https://doi.org/10.3390/app14167101 - 13 Aug 2024
Cited by 3 | Viewed by 2058
Abstract
Rock quality designation (RQD) is a parameter that describes rock mass quality in terms of percentage recovery of core pieces greater than 10 cm. The RQD represents a basic element of several classification systems. This paper studies scale effects for RQD measurements using [...] Read more.
Rock quality designation (RQD) is a parameter that describes rock mass quality in terms of percentage recovery of core pieces greater than 10 cm. The RQD represents a basic element of several classification systems. This paper studies scale effects for RQD measurements using synthetic rock masses generated using discrete fracture network (DFN) models. RQD measurements are performed for rock masses with varying fracture intensities and by changing the orientation of the simulated boreholes to account for orientation bias. The objective is to demonstrate the existence of a representative elementary length (REL, 1D analogue of a 3D representative elementary volume, or REV) above which RQD measurements would represent an average indicator of rock mass quality. For the synthetic rock masses, RQD measurements were calculated using the relationship proposed by Priest and Hudson and compared to the simulated RQD measurements along the boreholes. DFN models generated for a room-and-pillar mine using mapped field data were then used as an initial validation, and the conclusion of the study was further validated using the RQD calculation results directly obtained from the depth data collected at an iron cap deposit. The relationship between rock mass scale and assumed threshold length used to calculate RQD is also studied. Full article
Show Figures

Figure 1

17 pages, 11808 KiB  
Article
Geomechanical Analysis of the Main Roof Deformation in Room-and-Pillar Ore Mining Systems in Relation to Real Induced Seismicity
by Dariusz Chlebowski and Zbigniew Burtan
Appl. Sci. 2024, 14(13), 5710; https://doi.org/10.3390/app14135710 - 29 Jun 2024
Viewed by 1099
Abstract
Rockbursts represent one of the most serious and severe natural hazards emerging in underground copper mines within the Legnica–Glogow Copper District (LGCD) in Poland. The contributing factor determining the scale of this event is mining-induced seismicity of the rock strata. Extensive expertise of [...] Read more.
Rockbursts represent one of the most serious and severe natural hazards emerging in underground copper mines within the Legnica–Glogow Copper District (LGCD) in Poland. The contributing factor determining the scale of this event is mining-induced seismicity of the rock strata. Extensive expertise of the copper mining practitioners clearly indicates that high-energy tremors are the consequence of tectonic disturbances or can be attributed to stress/strain behaviour within the burst-prone roof strata. Apparently, seismic activity is a triggering factor; hence, attempts are made by mine operators to mitigate and control that risk. Underlying the effective rockburst control strategy is a reliable seismicity forecast, taking into account the causes of the registered phenomena. The paper summarises the geomechanics analyses aimed to verify the actual seismic and rockburst hazard levels in one of the panels within the copper mine Rudna (LGCD). Two traverses were designated at the face range and comparative analyses were conducted to establish correlations between the locations of epicentres of registered tremors and anomaly zones obtained via analytical modelling of changes in stress/strain behaviours within the rock strata. The main objective of this study was to evaluate the likelihood of activating carbonate/anhydrite layers within the main roof over the excavation being mined, with an aim to verify the potential causes and conditions which might have triggered the registered high-energy events. Special attention is given to two seismic events giving rise to rockbursts in mine workings. Results seem to confirm the adequacy and effectiveness of solutions provided by mechanics of deformable bodies in the context of forecasting the scale and risk of dynamic phenomena and selecting the appropriate mitigation and control measures in copper mines employing the room-and-pillar mining system. Full article
Show Figures

Figure 1

18 pages, 7413 KiB  
Article
Research on a Classification Method of Goaf Stability Based on CMS Measurement and the Cloud Matter–Element Model
by Jiazhao Chen, Yuye Tan, Xu Huang and Jianxin Fu
Appl. Sci. 2024, 14(9), 3774; https://doi.org/10.3390/app14093774 - 28 Apr 2024
Cited by 3 | Viewed by 1600
Abstract
The evaluation and classification of goaf stability are fuzzy and random. To address this problem, a new classification method is proposed. A cavity monitoring system is used to detect the goaf, 3DMine and FLAC3D software are used to conduct the 3D visual modeling [...] Read more.
The evaluation and classification of goaf stability are fuzzy and random. To address this problem, a new classification method is proposed. A cavity monitoring system is used to detect the goaf, 3DMine and FLAC3D software are used to conduct the 3D visual modeling of the scanning results, and numerical simulation analysis is performed on the goaf. According to the analysis results, the stability classification standard of the goaf is constructed, and the characteristics of each classification are described. The evaluation indicator system of goaf stability is constructed in accordance with similar engineering experience, and the evaluation indicator is weighted by using the analytic hierarchy process. The cloud–element coupling evaluation model is built, the field measured values of indicators are collected, the cloud correlation degree of goafs belonging to each stability level is calculated, the stability level is evaluated according to the principle of maximum membership degree, and the results are compared with the numerical simulation to analyze the reasons for the differences in the stability evaluation results obtained by the two methods and to improve the accuracy of the evaluation of goaf stability. The pillar stress and surrounding rock deformation are monitored in Room 1# of the inclined mining area of Shirengou Iron Mine. The monitoring results are consistent with the evaluation results, which proves the accuracy of the proposed goaf stability classification method. Full article
Show Figures

Figure 1

18 pages, 10041 KiB  
Article
Study on the Mining Effect and Optimal Design of Longwall Full Mining with Paste Partial Filling
by Yongqiang Zhou, Changxiang Wang, Changlong Liao, Jianhang Wang and Baoliang Zhang
Minerals 2024, 14(3), 264; https://doi.org/10.3390/min14030264 - 1 Mar 2024
Cited by 2 | Viewed by 1970
Abstract
Various methods of longwall full mining with partial filling have been extensively researched to satisfy the specific mining needs of pressurized-coal and residual-coal resources. This study introduces three longwall partial-filling-mining techniques: room–pillar filling mining, parallel-strip filling mining, and vertical-strip filling mining. Numerical simulations [...] Read more.
Various methods of longwall full mining with partial filling have been extensively researched to satisfy the specific mining needs of pressurized-coal and residual-coal resources. This study introduces three longwall partial-filling-mining techniques: room–pillar filling mining, parallel-strip filling mining, and vertical-strip filling mining. Numerical simulations are employed to evaluate the efficacy of these methods. The findings indicate that vertical-strip filling mining results in minimal surface deformation and a more uniform distribution of displacements. In practical operations, the effectiveness of filling largely depends on the choice of filling technology and materials. The research further includes an optimization analysis of the filling technology, emphasizing the composition of the coal-gangue-paste filling system and the refinement of its components. Additionally, the study aims to explore the optimization analysis of filling materials, specifically focusing on performance-optimization methods. The experimental results illustrate that optimizing the filling materials can enhance the performance of filling paste, improving both early-stage and long-term compressive strength. Moreover, the paper examines the quantitative characterization of paste-filling-mining subsidence at various stages in conjunction with theoretical knowledge. Subsequently, mining-subsidence-control measures are recommended to address the primary deformation factors across different stages. Through an in-depth examination of filling-method designs, enhancements in filling technology, and predictions regarding filling-mining subsidence, this research offers valuable insights for optimizing longwall partial-filling-mining methods. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

26 pages, 22627 KiB  
Article
Rainfall–Mining Coupling Effects on Slope Failure Mechanism and Evolution Process: A Case Study of Open-Pit to Underground Mining
by Qihang Li, Yunmin Wang, Xiaoshuang Li and Bin Gong
Water 2024, 16(5), 740; https://doi.org/10.3390/w16050740 - 29 Feb 2024
Cited by 9 | Viewed by 2164
Abstract
This research examines how rainfall and mining affect the slope damage resulting from the transition from open-pit mining to underground mining. Using an unmanned aerial vehicle (UAV), the Huangniu slope of the Dexing Copper Mine was fully characterized, and experiments were conducted on [...] Read more.
This research examines how rainfall and mining affect the slope damage resulting from the transition from open-pit mining to underground mining. Using an unmanned aerial vehicle (UAV), the Huangniu slope of the Dexing Copper Mine was fully characterized, and experiments were conducted on rock samples from appropriate sites. First, the mechanical properties of the samples were measured. Then, the parameters of the similarity simulation experiments were derived based on the similarity theory. Subsequently, the rainfall, rock slope, data acquisition, and monitoring systems were designed. Finally, the rock mass failure with different slope angles was analyzed, and the deformation and damage patterns under the coupling effect were obtained. The results show that rainfall increases pore water pressure and moisture content. Rainfall and slope-slip water have more of an impact on the open-pit platform. The pore water pressure values on the upper rock mass rise faster than inside it. In the open-pit mining stage, the rock mass shifts slightly to the upper left. In the room mining stage, vertical fractures and goaf sinking occur. The fractures above the mine form a semi-ellipse. In the pillar mining stage, overlying rock displacement is evident and fractures persist. In the continuous pillar mining stage, the overlying rock collapses. The 65° slope model was the most damaged, while the 55° slope model was the least damaged. The results also suggest that the UAV guides sample selection. Full article
Show Figures

Figure 1

19 pages, 5260 KiB  
Article
Stability Analysis of the Exploitation System with Room and Pillar by Analytical Methods
by Mihaela Toderas
Appl. Sci. 2024, 14(5), 1827; https://doi.org/10.3390/app14051827 - 23 Feb 2024
Cited by 4 | Viewed by 1291
Abstract
The mining method that is still often used in salt deposits is the room-and-pillar mining method, in which the dimensioning of the most requested element in the system is followed. The pillars are the elements subjected to the greatest loads. Knowing the size [...] Read more.
The mining method that is still often used in salt deposits is the room-and-pillar mining method, in which the dimensioning of the most requested element in the system is followed. The pillars are the elements subjected to the greatest loads. Knowing the size and distribution mode of the secondary state of stress—deformation—is a necessity that can lead to the design and realization of stable, reliable underground excavations. This paper proposes an analytical assessment model of the secondary stress state in the pillars between the operating rooms, as well as in the whole system room–pillar–floor, based on the results obtained from laboratory research through modeling and in situ research. For this purpose, the evaluation of the secondary stress state was carried out considering the following methods: (1) the dimensioning method based on the theory of limit equilibrium, taking into account the effective stress in the pillars; and (2) the mechanics of the continuous environment based on the design of some analytical models for evaluating the secondary stress-deformation state in the pillar and floor. The exploitation of one of the largest salt deposits in Romania is used as a case study, and the stability of the exploitation system with rooms and pillars is evaluated by analytical methods. The secondary state of tension was calculated at different points on the height of the pillar. Through the proposed algorithm, the value of the axial component of the secondary stress state at different points along the axis of a pillar located at a depth of 100 m varies between 1.498 and 1.657 MPa, compared to the value obtained by the finite element method and in situ measurements, which was 1.64 MPa. The comparison revealed a high degree of agreement between the results obtained for the depth of 100 m using both the FEM and laboratory and in situ measurements. This suggests that the proposed algorithm is a reliable method for predicting the secondary stress state. The presented algorithm can be extended in the field of mining deposits, where mining methods with rooms and pillars are used. Full article
Show Figures

Figure 1

10 pages, 4316 KiB  
Technical Note
An Analysis of the Impact of Mining Excavation Velocity on the Development of Gaseous and Gaseous Geodynamic Hazards in Copper Ore Mines
by Maciej Gniewosz, Agnieszka Stopkowicz and Marek Cała
Geosciences 2024, 14(2), 54; https://doi.org/10.3390/geosciences14020054 - 18 Feb 2024
Viewed by 1753
Abstract
The hazards of gaseous geodynamic phenomena and rockbursts are among the most challenging to assess and classify. This perception arises from both a review of the literature and an examination of available instructions and regulations in underground mining facilities. The hazard of gaseous [...] Read more.
The hazards of gaseous geodynamic phenomena and rockbursts are among the most challenging to assess and classify. This perception arises from both a review of the literature and an examination of available instructions and regulations in underground mining facilities. The hazard of gaseous geodynamic phenomena in Polish copper ore mines only appeared in 2009, whereas these phenomena occur and are commonly described in other mining countries. In Polish copper ore mines, due to the room and pillar system in fields with lengths of about 460 m, very often parallel to neighboring fields, which together give a length of about 900 m, it is difficult to identify the location of gas traps due to the large size of the area. This paper presents an analysis of the influence of the velocity of the excavation on the possibility of escalating or reducing the described mining hazards. An analysis of the impact of excavation velocity on the state of gaseous geodynamic and roof fall hazards was conducted for two mining fields. For the considered mining fields, the hypothesis was formulated that an excavation velocity greater than or equal to 17 m/month positively influences a reduction in both gaseous geodynamic and roof fall hazards. Full article
(This article belongs to the Topic Complex Rock Mechanics Problems and Solutions)
Show Figures

Figure 1

23 pages, 13758 KiB  
Article
Robust Localization for Underground Mining Vehicles: An Application in a Room and Pillar Mine
by Felipe Inostroza, Isao Parra-Tsunekawa and Javier Ruiz-del-Solar
Sensors 2023, 23(19), 8059; https://doi.org/10.3390/s23198059 - 24 Sep 2023
Cited by 9 | Viewed by 3225
Abstract
Most autonomous navigation systems used in underground mining vehicles such as load–haul–dump (LHD) vehicles and trucks use 2D light detection and ranging (LIDAR) sensors and 2D representations/maps of the environment. In this article, we propose the use of 3D LIDARs and existing 3D [...] Read more.
Most autonomous navigation systems used in underground mining vehicles such as load–haul–dump (LHD) vehicles and trucks use 2D light detection and ranging (LIDAR) sensors and 2D representations/maps of the environment. In this article, we propose the use of 3D LIDARs and existing 3D simultaneous localization and mapping (SLAM) jointly with 2D mapping methods to produce or update 2D grid maps of underground tunnels that may have significant elevation changes. Existing mapping methods that only use 2D LIDARs are shown to fail to produce accurate 2D grid maps of the environment. These maps can be used for robust localization and navigation in different mine types (e.g., sublevel stoping, block/panel caving, room and pillar), using only 2D LIDAR sensors. The proposed methodology was tested in the Werra Potash Mine located at Philippsthal, Germany, under real operational conditions. The obtained results show that the enhanced 2D map-building method produces a superior mapping performance compared with a 2D map generated without the use of the 3D LIDAR-based mapping solution. The 2D map generated enables robust 2D localization, which was tested during the operation of an autonomous LHD, performing autonomous navigation and autonomous loading over extended periods of time. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

18 pages, 6260 KiB  
Article
Modified Tributary Area and Pressure Arch Theories for Mine Pillar Stress Estimation in Mountainous Areas
by Yang Yu, Jin Ma, Shenen Chen, Kazhong Deng, Bingqian Chen, Fenfen Hua and Jianrong Kang
Minerals 2023, 13(1), 117; https://doi.org/10.3390/min13010117 - 12 Jan 2023
Cited by 1 | Viewed by 2747
Abstract
This paper describes a parametric study using discrete element modeling (DEM) of partial mining in a mountain terrain with in situ pillars for overburden support. For room and pillar mining or strip pillar mining, the accurate estimation of pillar stress is essential to [...] Read more.
This paper describes a parametric study using discrete element modeling (DEM) of partial mining in a mountain terrain with in situ pillars for overburden support. For room and pillar mining or strip pillar mining, the accurate estimation of pillar stress is essential to ensure pillar stability and mine safety. Classical mine design methods such as the tributary area theory (TAT) and the pressure arch theory (PAT) are commonly used to calculate the pillar stress for mines under a relatively flat terrain. However, mine sites with uneven terrains can result in nonuniform stress distributions in the mine system and the classical methods may underestimate the pillar stresses by several times. In this paper, 1200 DEM mine models with terrains that include either a single slope or a valley, have been constructed. Through rigorous numerical modeling, the effects of several design parameters are identified: The influence factors, influence range, and mechanism of the concentrated pillar stresses computed from the models indicate that the shape of an extended pressure arch (EPA) can dictate the accuracy of the TAT and PAT methods. Based on the EPA estimation, a pillar stress estimation method is proposed for the design of mines in mountainous terrains. This paper updated the method of terrain-induced pillar stress concentrations with an improved EPA theory, and the gap between PAT and TAT theories is addressed by further discussion on their relationship and applicability. Full article
Show Figures

Figure 1

17 pages, 6172 KiB  
Article
Back-Calculation Method for Estimation of Geomechanical Parameters in Numerical Modeling Based on In-Situ Measurements and Statistical Methods
by Karolina Adach-Pawelus
Energies 2022, 15(13), 4729; https://doi.org/10.3390/en15134729 - 28 Jun 2022
Cited by 4 | Viewed by 1792
Abstract
An important element of numerical modeling for specific mining issues is the selection of model parameters. The incorrect determination of geomechanical parameters can result in significant calculation errors carried throughout the entire problem. This paper presents a method for determining effective geomechanical parameters [...] Read more.
An important element of numerical modeling for specific mining issues is the selection of model parameters. The incorrect determination of geomechanical parameters can result in significant calculation errors carried throughout the entire problem. This paper presents a method for determining effective geomechanical parameters for technological and residual pillars through the use of numerical modeling, specifically, back-calculation. This is based on the results of numerical simulations, measurement data (e.g., excavation convergence measurements), and statistical methods (a non-linear regression model with “dummy” variables). The result is that appropriate parameters of pillars are set out iteratively so that the displacements of selected points in the numerical model correspond (with some approximation) to the results of mine measurements. The procedure of determining pillar parameters is presented using a case study of one mining field in an underground copper mine, where the deposit is mined using the room and pillar system. Numerical calculations were performed using a Phase2 v. 8.0 program (Rocscience, Toronto, Canada), while statistical calculations used a Statistica computer program. The results of excavation convergence measurements performed in the analyzed mine have been applied. This paper shows that for the presented method, the resulting matching of theoretical values of convergence determined numerically for specified pillar parameters to in-situ results of convergence measurements, is very good (R2 = 0.9896). This work exemplifies a set of the parameters of pillars for an elastic model of rock mass, but this method can also be applied to other models. Full article
(This article belongs to the Special Issue Volume II: Mining Innovation)
Show Figures

Figure 1

20 pages, 5361 KiB  
Article
Data Management System for a Semiautonomous Shuttle Car for Underground Room and Pillar Coal Mines
by Vasilis Androulakis, Steven Schafrik, Joseph Sottile and Zach Agioutantis
Automation 2021, 2(3), 153-172; https://doi.org/10.3390/automation2030010 - 13 Aug 2021
Cited by 2 | Viewed by 5264
Abstract
In recent years, autonomous solutions in the multidisciplinary field of mining engineering have been an extremely popular applied research topic. This is a result of the increasing demands of society on mineral resources along with the accelerating exploitation of the currently economically viable [...] Read more.
In recent years, autonomous solutions in the multidisciplinary field of mining engineering have been an extremely popular applied research topic. This is a result of the increasing demands of society on mineral resources along with the accelerating exploitation of the currently economically viable resources, which lead the mining sector to turn to deeper, more-difficult-to-mine orebodies. An appropriate data management system comprises a crucial aspect of the designing and the engineering of a system that involves autonomous or semiautonomous vehicles. The vast volume of data collected from onboard sensors, as well as from a potential IoT network dispersed around a smart mine, necessitates the development of a reliable data management strategy. Ideally, this strategy will allow for fast and asynchronous access to the data for real-time processing and decision-making purposes as well as for visualization through a corresponding human–machine interface. The proposed system has been developed for autonomous navigation of a coalmine shuttle car and has been implemented on a 1/6th scale shuttle car in a mock mine. It comprises three separate nodes, namely, a data collection node, a data management node, and a data processing and visualization node. This approach was dictated by the large amount of collected data and the need to ensure uninterrupted and fast data management and flow. The implementation of an SQL database server allows for asynchronous, real-time, and reliable data management, including data storage and retrieval. On the other hand, this approach introduces latencies between the data management node and the other two nodes. In general, these latencies include sensor latencies, network latencies, and processing latencies. However, the data processing and visualization module is able to retrieve and process the latest data and make a decision about the next optimal movement of the shuttle car prototype in less than 900 ms. This allows the prototype to navigate efficiently around the pillars without interruptions. Full article
(This article belongs to the Topic Industrial Robotics)
Show Figures

Figure 1

12 pages, 2685 KiB  
Article
Recognition of LHD Position and Maneuvers in Underground Mining Excavations—Identification and Parametrization of Turns
by Justyna Witulska, Paweł Stefaniak, Bartosz Jachnik, Artur Skoczylas, Paweł Śliwiński and Marek Dudzik
Appl. Sci. 2021, 11(13), 6075; https://doi.org/10.3390/app11136075 - 30 Jun 2021
Cited by 7 | Viewed by 2436
Abstract
The Inertial Measurement Unit (IMU) is widely used in the monitoring of mining assets. A good example is the Polish underground copper ore mines of KGHM, where research work with the use of the IMU has been carried out for several years. The [...] Read more.
The Inertial Measurement Unit (IMU) is widely used in the monitoring of mining assets. A good example is the Polish underground copper ore mines of KGHM, where research work with the use of the IMU has been carried out for several years. The potential of inertial sensors was ensured by the development of advanced analytics using machine learning methods to support the maintenance management of an extensive machine park and machine manufacturer in adapting various construction elements to mining conditions. The key algorithms developed in the field of inertial data concern: identification of cycles and components of the haulage process operations, identification of dynamic overloads, technical diagnostics of rotating elements, assessment of road conditions (bumps, slopes, damages), assessment of the technical condition of the pavement, assessment of the operator’s driving style, and finally the machine location in the mining excavation. One of the key operational contexts, necessary in the development of analytics for underground mining vehicles, is the identification of the turning moment of the machine at the intersection together with the determination of the driving direction and the turn angle. In the case of a mine with a room-and-pillar system, where the excavation system has the Manhattan structure, it is possible to use many simplifications to correctly estimate the machine motion path. The identification of the spatial context and the turning maneuver is of key importance both in the development of the machine location system, but also in multi-dimensional analyzes, including the analysis of dynamic overloads or the assessment of the operator’s driving style and work safety. The article presents a comparison of several mathematical models used for the machine turn detection problem, which were trained and tested on the real-life industrial data recorded using IMU during a single working shift of the self-propelled machine. Full article
(This article belongs to the Special Issue Control and Motion Planning in Industrial Applications)
Show Figures

Figure 1

17 pages, 6239 KiB  
Article
Application of Hydraulic Backfill for Rockburst Prevention in the Mining Field with Remnant in the Polish Underground Copper Mines
by Karolina Adach-Pawelus and Daniel Pawelus
Energies 2021, 14(13), 3869; https://doi.org/10.3390/en14133869 - 27 Jun 2021
Cited by 9 | Viewed by 2402
Abstract
In the polish underground copper mines owned by KGHM Polska Miedz S.A, various types of room and pillar mining systems are used, mainly with roof deflection, but also with dry and hydraulic backfill. One of the basic problems associated with the exploitation of [...] Read more.
In the polish underground copper mines owned by KGHM Polska Miedz S.A, various types of room and pillar mining systems are used, mainly with roof deflection, but also with dry and hydraulic backfill. One of the basic problems associated with the exploitation of copper deposits is rockburst hazard. Aa high level of rockburst hazard is caused by mining the ore at great depth in difficult geological and mining conditions, among others, in the vicinity of remnants. The main goal of this study is to investigate how hydraulic backfill improves the geomechanical situation in the mining filed and reduce rockburst risk in the vicinity of remnants. Numerical modeling was conducted for the case study of a mining field where undisturbed ore remnant, 40 m in width, was left behind. To compare the results, simulations were performed for a room and pillar mining system with roof deflection and for a room and pillar mining system with hydraulic backfill. Results of numerical analysis demonstrate that hydraulic backfill can limit rock mass deformation and disintegration in the mining field where remnants have been left. It may also reduce stress concentration inside or in the vicinity of a remnant, increase its stability, as well as prevent and reduce seismic and rockburst hazards. Hydraulic backfill as a local support stabilizes the geomechanical situation in the mining field. Full article
(This article belongs to the Special Issue Mining Innovation)
Show Figures

Graphical abstract

18 pages, 10959 KiB  
Article
Method of Selecting the Means of Transport of the Winning, Taking into Account Environmental Aspects
by Arkadiusz Kowalski and Robert Waszkowski
Appl. Sci. 2021, 11(12), 5512; https://doi.org/10.3390/app11125512 - 14 Jun 2021
Viewed by 2169
Abstract
The transport of the winning in deep mines, using the room and pillar mining system, is most often performed with bucket loaders and haul trucks. In the era of attempts to stop rapid climate change, it is crucial to choose the transport means [...] Read more.
The transport of the winning in deep mines, using the room and pillar mining system, is most often performed with bucket loaders and haul trucks. In the era of attempts to stop rapid climate change, it is crucial to choose the transport means for the winning both in terms of efficiency and cost-effectiveness and to consider its environmental aspect. Permissible levels of pollutant emissions in exhaust gases are defined for this type of means of transport by the EU Stage Standards. There is a discernible need to develop a multi-criteria method supporting the decision-making process, which should reward loaders and haul trucks that meet more stringent emission standards. The article proposes an innovative idea of taking environmental aspects into account when selecting loaders and haul trucks for excavated material transport tasks, so that the amount of pollutants emitted by them in exhaust gases, e.g., the sum of hydrocarbons and nitrogen oxides (HC+NOx), is also taken into consideration when assigning means of transport to particular tasks. Based on simulation studies for a specific case, it was found that a 20% reduction of HC+NOx emission is possible with only a 2% increase in the transport costs of the winning. For this purpose, an objective function was used formulated on the basis of two criteria: minimization of the transport cost of the winning and the level of pollutant emissions in the exhaust gases. Since dozens of mining machines are operated continuously in deep mines of non-ferrous metal ores, the application of the proposed method would significantly reduce the emission of pollutants in the used air coming out of ventilation shafts. Full article
(This article belongs to the Special Issue Maintenance 4.0 Technologies for Sustainable Manufacturing)
Show Figures

Figure 1

23 pages, 10389 KiB  
Article
Adjustment of the Yielding System of Mechanical Rock Bolts for Room and Pillar Mining Method in Stratified Rock Mass
by Krzysztof Skrzypkowski, Waldemar Korzeniowski, Krzysztof Zagórski and Anna Zagórska
Energies 2020, 13(8), 2082; https://doi.org/10.3390/en13082082 - 21 Apr 2020
Cited by 47 | Viewed by 4046
Abstract
The article presents a novel yielding mechanism, especially designed for the rock bolt support. Mechanical rock bolts with an expansion head and equipped with one, two, four and six dome bearing plates were tested in the laboratory conditions. Furthermore, in the Phase2D numerical [...] Read more.
The article presents a novel yielding mechanism, especially designed for the rock bolt support. Mechanical rock bolts with an expansion head and equipped with one, two, four and six dome bearing plates were tested in the laboratory conditions. Furthermore, in the Phase2D numerical program, five room and pillar widths were modeled. The main aim of numerical modeling was to determine the maximal range of the rock damage area and the total displacements in the expanded room. The models were made for a room and pillar method with a roof sag for copper ore deposits in the Legnica-Głogów Copper District in Poland. Additionally, in the article a load model of the rock bolt support as a result of a geomechanical seismic event is presented. Based on the results of laboratory tests (load–displacement characteristics), the strain energy of the bolt support equipped with the yielding device in the form of dome bearing plates was determined and compared with the impact energy caused by predicted falling rock layers. Based on the laboratory tests, numerical modeling and mathematical dynamic model of rock bolt support, the dependence of the drop height and the corresponding impact energy for the expanded room was determined. Full article
Show Figures

Figure 1

Back to TopTop