Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = roof-and-rib synergistic support

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8018 KB  
Article
Failure Mechanism and Rib-Roof Synergistic Support Technology for Bottom-Driven Roadways in Deep Thick Coal Seams
by Yanghao Peng, Hanze Jiang, Zhenjie Peng, Qiang Fu, Changjiang Li and Jianlin Zhou
Appl. Sci. 2026, 16(2), 970; https://doi.org/10.3390/app16020970 (registering DOI) - 17 Jan 2026
Abstract
Roadways driven along the floor of thick coal seams, while retaining the top coal, form “thick coal seam floor roadways.” These large-section roadways feature a composite coal-rock roof and weak coal ribs, leading to low overall strength and poor stability of the surrounding [...] Read more.
Roadways driven along the floor of thick coal seams, while retaining the top coal, form “thick coal seam floor roadways.” These large-section roadways feature a composite coal-rock roof and weak coal ribs, leading to low overall strength and poor stability of the surrounding rock. Significant deformation and “necking” often occur, accompanied by roof falls and rib spalling, which are exacerbated under high stress or adverse geology, threatening mine safety and production. In this study, the 2201 haulage gateway in Yingpanhao Coal Mine is investigated to address surrounding rock control in such deep roadways. Using field investigation, theoretical analysis, numerical simulation, and similar simulation tests, the failure mechanisms of ribs and roofs are analyzed. Rib failure is characterized by tensile fracture in the shallow zone, splitting failure in the medium-depth zone, and incomplete conjugate shear in the deep zone. Corresponding mechanical models are established, and a method for calculating total rib failure depth—combining tensile/splitting and shear failure depths—is proposed, along with a bolt length design formula. Based on this, a synergistic roof-and-rib support technology is developed. The failure mechanism and optimal support scheme are validated through simulation tests and successfully applied in the field, demonstrating satisfactory performance. The findings provide a valuable reference for support design in similar mining roadways. Full article
Show Figures

Figure 1

28 pages, 13096 KB  
Article
Study on Failure Mechanism and Synergistic Support–Unloading Control Approach in Goaf-Side Roadways in Deep Thick Coal Seams
by Chong Zhang, Yue Sun, Yan Zhang, Yubing Huang, Huayu Yang, Zhenqing Zhang, Chen Chen and Hongdi Tian
Energies 2025, 18(16), 4330; https://doi.org/10.3390/en18164330 - 14 Aug 2025
Cited by 1 | Viewed by 651
Abstract
With coal mines’ mining depth increasing, the stress environment in deep mining (including key factors such as high ground stress, strong disturbance, and complex geological structures, as well as stress redistribution after deformation of surrounding roadway rock) is complex, which leads to increasingly [...] Read more.
With coal mines’ mining depth increasing, the stress environment in deep mining (including key factors such as high ground stress, strong disturbance, and complex geological structures, as well as stress redistribution after deformation of surrounding roadway rock) is complex, which leads to increasingly prominent deformation and failure problems for goaf-side roadways in thick coal seams. Surrounding rock deformation is difficult to control, and mine pressure behavior is violent, making traditional support technologies no longer able to meet the mining safety requirements of roadways in deep thick coal seams. Taking the 6311 working face of Tangkou Coal Mine as the engineering research background, this paper systematically summarizes the deformation and failure characteristics of goaf-side roadways in deep thick coal seams through field monitoring, borehole peeping, and other means, and conducts in-depth analysis of their failure mechanisms and influencing factors. Aiming at these problems, a synergistic support–unloading control method for goaf-side roadways is proposed, which integrates roof blasting pressure relief, coal pillar grouting reinforcement, and constant-resistance energy-absorbing anchor cable support. The effects of the unsupported scheme, original support scheme, and synergistic support–unloading control scheme are compared and analyzed through FLAC3D numerical simulation. Further verification through field application shows that it has remarkable effects in controlling roadway convergence deformation, roof separation, and bolt (cable) stress. Specifically, compared with the original support schemes, the horizontal displacement on the coal pillar side is reduced by 89.5% compared with the original support scheme, and the horizontal displacement on the solid coal side is reduced by 79.3%; the vertical displacement on the coal pillar side is reduced by 45.8% and the vertical displacement on the solid coal side is reduced by 42.4%. Compared with the original support scheme, the maximum deformation of the roadway’s solid coal rib, roof, and coal pillar rib is reduced by 76%, 83%, and 88%, respectively, while the separation between the shallow and deep roof remains at a low level. The coal stress continues fluctuating stably during the monitoring period; the force on the bolts (cables) does not exceed the designed anchoring force, with sufficient bearing reserve space (47% remaining), and no breakage occurs, which fully proves the feasibility and effectiveness of the synergistic support–unloading control technology scheme. This technology realizes the effective control of on-site roadways and provides technical reference for the support engineering of coal mine goaf-side roadways under similar conditions. Full article
Show Figures

Figure 1

29 pages, 7048 KB  
Article
Research on Synergistic Control Technology for Composite Roofs in Mining Roadways
by Lei Wang, Gang Liu, Dali Lin, Yue Song and Yongtao Zhu
Processes 2025, 13(8), 2342; https://doi.org/10.3390/pr13082342 - 23 Jul 2025
Viewed by 480
Abstract
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of [...] Read more.
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of the composite roof and developed a synergistic control system, validated through industrial application. Key findings indicate significant differences in mechanical behavior and failure mechanisms between individual rock specimens and composite rock masses. A theoretical “elastic-plastic-fractured” zoning model for the composite roof was established based on the theory of surrounding rock deterioration, elucidating the mechanical mechanism where the cohesive strength of hard rock governs the load-bearing capacity of the outer shell, while the cohesive strength of soft rock controls plastic flow. The influence of in situ stress and support resistance on the evolution of the surrounding rock zone radii was quantitatively determined. The FLAC3D strain-softening model accurately simulated the post-peak behavior of the surrounding rock. Analysis demonstrated specific inherent patterns in the magnitude, ratio, and orientation of principal stresses within the composite roof under mining influence. A high differential stress zone (σ1/σ3 = 6–7) formed within 20 m of the working face, accompanied by a deflection of the maximum principal stress direction by 53, triggering the expansion of a butterfly-shaped plastic zone. Based on these insights, we proposed and implemented a synergistic control system integrating high-pressure grouting, pre-stressed cables, and energy-absorbing bolts. Field tests demonstrated significant improvements: roof-to-floor convergence reduced by 48.4%, rib-to-rib convergence decreased by 39.3%, microseismic events declined by 61%, and the self-stabilization period of the surrounding rock shortened by 11%. Consequently, this research establishes a holistic “theoretical modeling-evolution diagnosis-synergistic control” solution chain, providing a validated theoretical foundation and engineering paradigm for composite roof support design. Full article
Show Figures

Figure 1

Back to TopTop