Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = rodent models of epilepsy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6122 KiB  
Article
GABAA Receptors Are Involved in the Seizure Blockage Prompted by a Polyphenol-Rich Extract of White Grape Juice in Rodents
by Alessandro Maugeri, Rita Citraro, Antonio Leo, Caterina Russo, Michele Navarra and Giovambattista De Sarro
Pharmaceuticals 2025, 18(2), 186; https://doi.org/10.3390/ph18020186 - 30 Jan 2025
Cited by 1 | Viewed by 996
Abstract
Background/Objectives: Polyphenols have been suggested to possess anticonvulsant properties, which can be exploited as tools in novel strategies against epilepsy. Along that line, the aim of this study was to investigate the effects of a polyphenol-rich extract of white grape juice (WGJe) in [...] Read more.
Background/Objectives: Polyphenols have been suggested to possess anticonvulsant properties, which can be exploited as tools in novel strategies against epilepsy. Along that line, the aim of this study was to investigate the effects of a polyphenol-rich extract of white grape juice (WGJe) in different rodent models of epilepsy, exploring its putative mechanism of action. Methods: In this study, we employed pentylenetetrazole (PTZ)-injected ICR-CD1 mice, audiogenic seizure (AGS)-susceptible DBA/2 mice and WAG/Rij rats. Seizures were monitored and scored, while absence was assessed by electroencephalogram. The open-field test was employed to assess the anxiolytic effects of WGJe. In order to assess the involvement of the GABAA receptor, we used the antagonist flumazenil in AGS-susceptible DBA/2 mice. Computational analyses were employed to evaluate the interaction of the main polyphenols of WGJe and GABAA receptors. Results: Our results showed that the intraperitoneal injection of WGJe hindered tonic seizures in PTZ-injected ICR-CD1 mice. In WAG/Rij rats, WGJe did not elicit any significant effects on spike-wave discharges compared to untreated rats. In AGS-susceptible DBA/2 mice, WGJe significantly hampered both clonic and tonic seizures, as well as induced anxiolytic effects. Interestingly, when administering WGJe with flumazenil to DBA/2 mice, we noted that the observed effects were mediated by the GABAA receptor. Moreover, docking simulations confirmed that the main polyphenols of WGJe are able to interact with the benzodiazepine sites located in both extracellular and transmembrane domains in the GABAA receptor. Conclusions: This study outlines the mechanism underlying the anti-epileptic activity of WGJe, thus supporting its potential role in the management of epilepsy. Full article
Show Figures

Figure 1

19 pages, 638 KiB  
Review
The Oxidative Stress in Epilepsy—Focus on Melatonin
by Maciej Kamieniak, Kamil Kośmider, Barbara Miziak and Stanisław J. Czuczwar
Int. J. Mol. Sci. 2024, 25(23), 12943; https://doi.org/10.3390/ijms252312943 - 2 Dec 2024
Cited by 3 | Viewed by 2531
Abstract
Oxidative stress develops when there is an excess of oxidants leading to molecular and cellular damage. Seizure activity leads to oxidative stress and the resulting increased lipid peroxidation. Generally, antiseizure medications reduce oxidative stress, although the data on levetiracetam are ambiguous. Exogenous antioxidants [...] Read more.
Oxidative stress develops when there is an excess of oxidants leading to molecular and cellular damage. Seizure activity leads to oxidative stress and the resulting increased lipid peroxidation. Generally, antiseizure medications reduce oxidative stress, although the data on levetiracetam are ambiguous. Exogenous antioxidants (vitamin E, resveratrol, hesperidin, and curcumin) have been documented to exert an anticonvulsant effect in animal models of seizures and some recent clinical data point to curcumin as an affective adjuvant for the therapy of pediatric intractable epilepsy. Melatonin is an antioxidant with an ability to attenuate seizure activity induced by various convulsants in rodents. Its clinical effectiveness has been also confirmed in a number of clinical studies. Experimental studies point to a possibility that endogenous melatonin may possess proconvulsive activity. Moreover, some scarce clinical data seem to express this view; however, a limited number of patients were included. The anticonvulsant activity of exogenous melatonin may involve GABA-mediated inhibition, while endogenous melatonin may act as a proconvulsant due to a decrease in the brain dopaminergic transmission. Antioxidants, including melatonin, may be considered as adjuvants in the therapy of epilepsy and melatonin, in addition, in patients with epilepsy suffering from sleep disorders. Full article
(This article belongs to the Special Issue Molecular Research in Epilepsy and Epileptogenesis)
Show Figures

Figure 1

12 pages, 1785 KiB  
Article
Sleep Abnormalities in SLC13A5 Citrate Transporter Disorder
by Raegan M. Adams, Can Ozlu, Lauren E. Bailey, Rayann M. Solidum, Sydney Cooper, Carrie R. Best, Jennifer Elacio, Brian C. Kavanaugh, Tanya L. Brown, Kimberly Nye, Judy Liu, Brenda E. Porter, Kimberly Goodspeed and Rachel M. Bailey
Genes 2024, 15(10), 1338; https://doi.org/10.3390/genes15101338 - 18 Oct 2024
Viewed by 2355
Abstract
Background: SLC13A5 Citrate Transporter Disorder is a rare pediatric neurodevelopmental disorder. Patients have epilepsy, developmental disability, and impaired mobility. While sleep disorders are common in children with neurodevelopmental disorders, sleep abnormalities have not been reported in SLC13A5 patients. Methods: Here, we assessed sleep [...] Read more.
Background: SLC13A5 Citrate Transporter Disorder is a rare pediatric neurodevelopmental disorder. Patients have epilepsy, developmental disability, and impaired mobility. While sleep disorders are common in children with neurodevelopmental disorders, sleep abnormalities have not been reported in SLC13A5 patients. Methods: Here, we assessed sleep disturbances in patients through caregiver reported surveys and in a transgenic mouse model of SLC13A5 deficiency. A total of 26 patients were evaluated with the Sleep Disturbance Scale for Children three times over a one-year span. Sleep and wake activities were assessed in the SLC13A5 knock-out (KO) mice using wireless telemetry devices. Results: A high burden of clinically significant sleep disturbances were reported in the patients, with heterogeneous symptoms that remained stable across time. While sleep disturbances were common, less than 30% of patients were prescribed medications for sleep. Comparatively, in SLC13A5 KO mice using EEG recordings, significant alterations were found during light cycles, when rodents typically sleep. During the sleep period, SLC13A5 mice had increased activity, decreased paradoxical sleep, and changes in absolute power spectral density, indicating altered sleep architecture in the mouse model. Conclusions: Our results demonstrate a significant component of sleep disturbances in SLC13A5 patients and mice, highlighting a potential gap in patient care. Further investigation of sleep dysfunction and the underlying etiologies of sleep disturbances in SLC13A5 citrate transporter disorder is warranted. Full article
(This article belongs to the Special Issue Feature Papers in Human Genomics and Genetic Diseases 2024)
Show Figures

Graphical abstract

29 pages, 705 KiB  
Review
AI-Based Electroencephalogram Analysis in Rodent Models of Epilepsy: A Systematic Review
by Mercy Edoho, Catherine Mooney and Lan Wei
Appl. Sci. 2024, 14(16), 7398; https://doi.org/10.3390/app14167398 - 22 Aug 2024
Cited by 2 | Viewed by 3025
Abstract
About 70 million people globally have been diagnosed with epilepsy. Electroencephalogram (EEG) devices are the primary method for identifying and monitoring seizures. The use of EEG expands the preclinical research involving the long-term recording of neuro-activities in rodent models of epilepsy targeted towards [...] Read more.
About 70 million people globally have been diagnosed with epilepsy. Electroencephalogram (EEG) devices are the primary method for identifying and monitoring seizures. The use of EEG expands the preclinical research involving the long-term recording of neuro-activities in rodent models of epilepsy targeted towards the efficient testing of prospective antiseizure medications. Typically, trained epileptologists visually analyse long-term EEG recordings, which is time-consuming and subject to expert variability. Automated epileptiform discharge detection using machine learning or deep learning methods is an effective approach to tackling these challenges. This systematic review examined and summarised the last 30 years of research on detecting epileptiform discharge in rodent models of epilepsy using machine learning and deep learning methods. A comprehensive literature search was conducted on two databases, PubMed and Google Scholar. Following the PRISMA protocol, the 3021 retrieved articles were filtered to 21 based on inclusion and exclusion criteria. An additional article was obtained through the reference list. Hence, 22 articles were selected for critical analysis in this review. These articles revealed the seizure type, features and feature engineering, machine learning and deep learning methods, training methodologies, evaluation metrics so far explored, and models deployed for real-world validation. Although these studies have advanced the field of epilepsy research, the majority of the models are experimental. Further studies are required to fill in the identified gaps and expedite preclinical research in epilepsy, ultimately leading to translational research. Full article
(This article belongs to the Special Issue Application of Decision Support Systems in Biomedical Engineering)
Show Figures

Figure 1

18 pages, 1456 KiB  
Review
(R)-(-)-Ketamine: The Promise of a Novel Treatment for Psychiatric and Neurological Disorders
by Hana Shafique, Julie C. Demers, Julia Biesiada, Lalit K. Golani, Rok Cerne, Jodi L. Smith, Marta Szostak and Jeffrey M. Witkin
Int. J. Mol. Sci. 2024, 25(12), 6804; https://doi.org/10.3390/ijms25126804 - 20 Jun 2024
Cited by 16 | Viewed by 3162
Abstract
NMDA receptor antagonists have potential for therapeutics in neurological and psychiatric diseases, including neurodegenerative diseases, epilepsy, traumatic brain injury, substance abuse disorder (SUD), and major depressive disorder (MDD). (S)-ketamine was the first of a novel class of antidepressants, rapid-acting antidepressants, to [...] Read more.
NMDA receptor antagonists have potential for therapeutics in neurological and psychiatric diseases, including neurodegenerative diseases, epilepsy, traumatic brain injury, substance abuse disorder (SUD), and major depressive disorder (MDD). (S)-ketamine was the first of a novel class of antidepressants, rapid-acting antidepressants, to be approved for medical use. The stereoisomer, (R)-ketamine (arketamine), is currently under development for treatment-resistant depression (TRD). The compound has demonstrated efficacy in multiple animal models. Two clinical studies disclosed efficacy in TRD and bipolar depression. A study by the drug sponsor recently failed to reach a priori clinical endpoints but post hoc analysis revealed efficacy. The clinical value of (R)-ketamine is supported by experimental data in humans and rodents, showing that it is less sedating, does not produce marked psychotomimetic or dissociative effects, has less abuse potential than (S)-ketamine, and produces efficacy in animal models of a range of neurological and psychiatric disorders. The mechanisms of action of the antidepressant effects of (R)-ketamine are hypothesized to be due to NMDA receptor antagonism and/or non-NMDA receptor mechanisms. We suggest that further clinical experimentation with (R)-ketamine will create novel and improved medicines for some of the neurological and psychiatric disorders that are underserved by current medications. Full article
Show Figures

Figure 1

18 pages, 336 KiB  
Review
Molecular Genetics of Acquired Temporal Lobe Epilepsy
by Anne-Marie Neumann and Stefan Britsch
Biomolecules 2024, 14(6), 669; https://doi.org/10.3390/biom14060669 - 7 Jun 2024
Cited by 3 | Viewed by 2384
Abstract
An epilepsy diagnosis reduces a patient’s quality of life tremendously, and it is a fate shared by over 50 million people worldwide. Temporal lobe epilepsy (TLE) is largely considered a nongenetic or acquired form of epilepsy that develops in consequence of neuronal trauma [...] Read more.
An epilepsy diagnosis reduces a patient’s quality of life tremendously, and it is a fate shared by over 50 million people worldwide. Temporal lobe epilepsy (TLE) is largely considered a nongenetic or acquired form of epilepsy that develops in consequence of neuronal trauma by injury, malformations, inflammation, or a prolonged (febrile) seizure. Although extensive research has been conducted to understand the process of epileptogenesis, a therapeutic approach to stop its manifestation or to reliably cure the disease has yet to be developed. In this review, we briefly summarize the current literature predominately based on data from excitotoxic rodent models on the cellular events proposed to drive epileptogenesis and thoroughly discuss the major molecular pathways involved, with a focus on neurogenesis-related processes and transcription factors. Furthermore, recent investigations emphasized the role of the genetic background for the acquisition of epilepsy, including variants of neurodevelopmental genes. Mutations in associated transcription factors may have the potential to innately increase the vulnerability of the hippocampus to develop epilepsy following an injury—an emerging perspective on the epileptogenic process in acquired forms of epilepsy. Full article
12 pages, 1749 KiB  
Article
Matrix Metalloproteinase-9 Contributes to Epilepsy Development after Ischemic Stroke in Mice
by Barbara Pijet, Agnieszka Kostrzewska-Księzyk, Maja Pijet-Kucicka and Leszek Kaczmarek
Int. J. Mol. Sci. 2024, 25(2), 896; https://doi.org/10.3390/ijms25020896 - 11 Jan 2024
Cited by 3 | Viewed by 1857
Abstract
Epilepsy, a neurological disorder affecting over 50 million individuals globally, is characterized by an enduring predisposition and diverse consequences, both neurobiological and social. Acquired epilepsy, constituting 30% of cases, often results from brain-damaging injuries like ischemic stroke. With one third of epilepsy cases [...] Read more.
Epilepsy, a neurological disorder affecting over 50 million individuals globally, is characterized by an enduring predisposition and diverse consequences, both neurobiological and social. Acquired epilepsy, constituting 30% of cases, often results from brain-damaging injuries like ischemic stroke. With one third of epilepsy cases being resistant to existing drugs and without any preventive therapeutics for epileptogenesis, identifying anti-epileptogenic targets is crucial. Stroke being a leading cause of acquired epilepsy, particularly in the elderly, prompts the need for understanding post-stroke epileptogenesis. Despite the challenges in studying stroke-evoked epilepsy in rodents due to poor long-term survival rates, in this presented study the use of an animal care protocol allowed for comprehensive investigation. We highlight the role of matrix metalloproteinase-9 (MMP-9) in post-stroke epileptogenesis, emphasizing MMP-9 involvement in mouse models and its potential as a therapeutic target. Using a focal Middle Cerebral Artery occlusion model, this study demonstrates MMP-9 activation following ischemia, influencing susceptibility to seizures. MMP-9 knockout reduces epileptic features, while overexpression exacerbates them. The findings show that MMP-9 is a key player in post-stroke epileptogenesis, presenting opportunities for future therapies and expanding our understanding of acquired epilepsy. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Epilepsy—3rd Edition)
Show Figures

Figure 1

20 pages, 5745 KiB  
Article
Effect of Vagus Nerve Stimulation on the GASH/Sal Audiogenic-Seizure-Prone Hamster
by Jaime Gonçalves-Sánchez, Consuelo Sancho, Dolores E. López, Orlando Castellano, Begoña García-Cenador, Gabriel Servilha-Menezes, Juan M. Corchado, Norberto García-Cairasco and Jesús M. Gonçalves-Estella
Int. J. Mol. Sci. 2024, 25(1), 91; https://doi.org/10.3390/ijms25010091 - 20 Dec 2023
Cited by 1 | Viewed by 2172
Abstract
Vagus nerve stimulation (VNS) is an adjuvant neuromodulation therapy for the treatment of refractory epilepsy. However, the mechanisms behind its effectiveness are not fully understood. Our aim was to develop a VNS protocol for the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) in [...] Read more.
Vagus nerve stimulation (VNS) is an adjuvant neuromodulation therapy for the treatment of refractory epilepsy. However, the mechanisms behind its effectiveness are not fully understood. Our aim was to develop a VNS protocol for the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) in order to evaluate the mechanisms of action of the therapy. The rodents were subject to VNS for 14 days using clinical stimulation parameters by implanting a clinically available neurostimulation device or our own prototype for laboratory animals. The neuroethological assessment of seizures and general behavior were performed before surgery, and after 7, 10, and 14 days of VNS. Moreover, potential side effects were examined. Finally, the expression of 23 inflammatory markers in plasma and the left-brain hemisphere was evaluated. VNS significantly reduced seizure severity in GASH/Sal without side effects. No differences were observed between the neurostimulation devices. GASH/Sal treated with VNS showed statistically significant reduced levels of interleukin IL-1β, monocyte chemoattractant protein MCP-1, matrix metalloproteinases (MMP-2, MMP-3), and tumor necrosis factor TNF-α in the brain. The described experimental design allows for the study of VNS effects and mechanisms of action using an implantable device. This was achieved in a model of convulsive seizures in which VNS is effective and shows an anti-inflammatory effect. Full article
(This article belongs to the Special Issue Epilepsy: From Molecular Basis to Therapy)
Show Figures

Figure 1

21 pages, 2291 KiB  
Article
EpiPro, a Novel, Synthetic, Activity-Regulated Promoter That Targets Hyperactive Neurons in Epilepsy for Gene Therapy Applications
by Cassidy T. Burke, Iuliia Vitko, Justyna Straub, Elsa O. Nylund, Agnieszka Gawda, Kathryn Blair, Kyle A. Sullivan, Lara Ergun, Matteo Ottolini, Manoj K. Patel and Edward Perez-Reyes
Int. J. Mol. Sci. 2023, 24(19), 14467; https://doi.org/10.3390/ijms241914467 - 23 Sep 2023
Cited by 1 | Viewed by 2553
Abstract
Epileptogenesis is characterized by intrinsic changes in neuronal firing, resulting in hyperactive neurons and the subsequent generation of seizure activity. These alterations are accompanied by changes in gene transcription networks, first with the activation of early-immediate genes and later with the long-term activation [...] Read more.
Epileptogenesis is characterized by intrinsic changes in neuronal firing, resulting in hyperactive neurons and the subsequent generation of seizure activity. These alterations are accompanied by changes in gene transcription networks, first with the activation of early-immediate genes and later with the long-term activation of genes involved in memory. Our objective was to engineer a promoter containing binding sites for activity-dependent transcription factors upregulated in chronic epilepsy (EpiPro) and validate it in multiple rodent models of epilepsy. First, we assessed the activity dependence of EpiPro: initial electrophysiology studies found that EpiPro-driven GFP expression was associated with increased firing rates when compared with unlabeled neurons, and the assessment of EpiPro-driven GFP expression revealed that GFP expression was increased ~150× after status epilepticus. Following this, we compared EpiPro-driven GFP expression in two rodent models of epilepsy, rat lithium/pilocarpine and mouse electrical kindling. In rodents with chronic epilepsy, GFP expression was increased in most neurons, but particularly in dentate granule cells, providing in vivo evidence to support the “breakdown of the dentate gate” hypothesis of limbic epileptogenesis. Finally, we assessed the time course of EpiPro activation and found that it was rapidly induced after seizures, with inactivation following over weeks, confirming EpiPro’s potential utility as a gene therapy driver for epilepsy. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Epilepsy 2.0)
Show Figures

Figure 1

18 pages, 647 KiB  
Review
Update on Nonhuman Primate Models of Brain Disease and Related Research Tools
by Nan Qiao, Lizhen Ma, Yi Zhang and Lifeng Wang
Biomedicines 2023, 11(9), 2516; https://doi.org/10.3390/biomedicines11092516 - 12 Sep 2023
Cited by 7 | Viewed by 4837
Abstract
The aging of the population is an increasingly serious issue, and many age-related illnesses are on the rise. These illnesses pose a serious threat to the health and safety of elderly individuals and create a serious economic and social burden. Despite substantial research [...] Read more.
The aging of the population is an increasingly serious issue, and many age-related illnesses are on the rise. These illnesses pose a serious threat to the health and safety of elderly individuals and create a serious economic and social burden. Despite substantial research into the pathogenesis of these diseases, their etiology and pathogenesis remain unclear. In recent decades, rodent models have been used in attempts to elucidate these disorders, but such models fail to simulate the full range of symptoms. Nonhuman primates (NHPs) are the most ideal neuroscientific models for studying the human brain and are more functionally similar to humans because of their high genetic similarities and phenotypic characteristics in comparison with humans. Here, we review the literature examining typical NHP brain disease models, focusing on NHP models of common diseases such as dementia, Parkinson’s disease, and epilepsy. We also explore the application of electroencephalography (EEG), magnetic resonance imaging (MRI), and optogenetic study methods on NHPs and neural circuits associated with cognitive impairment. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

16 pages, 5074 KiB  
Article
A Compared Study of Eicosapentaenoic Acid and Docosahexaenoic Acid in Improving Seizure-Induced Cognitive Deficiency in a Pentylenetetrazol-Kindling Young Mice Model
by Yueqi Yang, Xueyan Wang, Lu Chen, Shiben Wang, Jun Han, Zhengping Wang and Min Wen
Mar. Drugs 2023, 21(9), 464; https://doi.org/10.3390/md21090464 - 24 Aug 2023
Cited by 8 | Viewed by 2693
Abstract
Epilepsy is a chronic neurological disorder that is more prevalent in children, and recurrent unprovoked seizures can lead to cognitive impairment. Numerous studies have reported the benefits of docosahexaenoic acid (DHA) on neurodevelopment and cognitive ability, while comparatively less attention has been given [...] Read more.
Epilepsy is a chronic neurological disorder that is more prevalent in children, and recurrent unprovoked seizures can lead to cognitive impairment. Numerous studies have reported the benefits of docosahexaenoic acid (DHA) on neurodevelopment and cognitive ability, while comparatively less attention has been given to eicosapentaenoic acid (EPA). Additionally, little is known about the effects and mechanisms of DHA and EPA in relation to seizure-induced cognitive impairment in the young rodent model. Current research indicates that ferroptosis is involved in epilepsy and cognitive deficiency in children. Further investigation is warranted to determine whether EPA or DHA can mitigate seizure-induced cognitive deficits by inhibiting ferroptosis. Therefore, this study was conducted to compare the effects of DHA and EPA on seizure-induced cognitive deficiency and reveal the underlying mechanisms focused on ferroptosis in a pentylenetetrazol (PTZ)-kindling young mice model. Mice were fed a diet containing DHA-enriched ethyl esters or EPA-enriched ethyl esters for 21 days at the age of 3 weeks and treated with PTZ (35 mg/kg, i.p.) every other day 10 times. The findings indicated that both EPA and DHA exhibited ameliorative effects on seizure-induced cognitive impairment, with EPA demonstrating a superior efficacy. Further mechanism study revealed that supplementation of DHA and EPA significantly increased cerebral DHA and EPA levels, balanced neurotransmitters, and inhibited ferroptosis by modulating iron homeostasis and reducing lipid peroxide accumulation in the hippocampus through activating the Nrf2/Sirt3 signal pathway. Notably, EPA exhibited better an advantage in ameliorating iron dyshomeostasis compared to DHA, owing to its stronger upregulation of Sirt3. These results indicate that DHA and EPA can efficaciously alleviate seizure-induced cognitive deficiency by inhibiting ferroptosis in PTZ-kindled young mice. Full article
(This article belongs to the Special Issue Marine Fish Oils as Functional Foods)
Show Figures

Graphical abstract

20 pages, 2792 KiB  
Review
Identification of New Antiseizure Medication Candidates in Preclinical Animal Studies
by Chih-Sheng Yang, Man-Chun Wu, Ming-Chi Lai, Sheng-Nan Wu and Chin-Wei Huang
Int. J. Mol. Sci. 2023, 24(17), 13143; https://doi.org/10.3390/ijms241713143 - 24 Aug 2023
Cited by 1 | Viewed by 2630
Abstract
Epilepsy is a multifactorial neurologic disease that often leads to many devastating disabilities and an enormous burden on the healthcare system. Until now, drug-resistant epilepsy has presented a major challenge for approximately 30% of the epileptic population. The present article summarizes the validated [...] Read more.
Epilepsy is a multifactorial neurologic disease that often leads to many devastating disabilities and an enormous burden on the healthcare system. Until now, drug-resistant epilepsy has presented a major challenge for approximately 30% of the epileptic population. The present article summarizes the validated rodent models of seizures employed in pharmacological researches and comprehensively reviews updated advances of novel antiseizure candidates in the preclinical phase. Newly discovered compounds that demonstrate antiseizure efficacy in preclinical trials will be discussed in the review. It is inspiring that several candidates exert promising antiseizure activities in drug-resistant seizure models. The representative compounds consist of derivatives of hybrid compounds that integrate multiple approved antiseizure medications, novel positive allosteric modulators targeting subtype-selective γ-Aminobutyric acid type A receptors, and a derivative of cinnamamide. Although the precise molecular mechanism, pharmacokinetic properties, and safety are not yet fully clear in every novel antiseizure candidate, the adapted approaches to design novel antiseizure medications provide new insights to overcome drug-resistant epilepsy. Full article
(This article belongs to the Special Issue Epilepsy Research and Antiepileptic Drugs)
Show Figures

Figure 1

12 pages, 1326 KiB  
Communication
GL-II-73, a Positive Allosteric Modulator of α5GABAA Receptors, Reverses Dopamine System Dysfunction Associated with Pilocarpine-Induced Temporal Lobe Epilepsy
by Alexandra M. McCoy, Thomas D. Prevot, Dishary Sharmin, James M. Cook, Etienne L. Sibille and Daniel J. Lodge
Int. J. Mol. Sci. 2023, 24(14), 11588; https://doi.org/10.3390/ijms241411588 - 18 Jul 2023
Cited by 2 | Viewed by 2550
Abstract
Although seizures are a hallmark feature of temporal lobe epilepsy (TLE), psychiatric comorbidities, including psychosis, are frequently associated with TLE and contribute to decreased quality of life. Currently, there are no defined therapeutic protocols to manage psychosis in TLE patients, as antipsychotic agents [...] Read more.
Although seizures are a hallmark feature of temporal lobe epilepsy (TLE), psychiatric comorbidities, including psychosis, are frequently associated with TLE and contribute to decreased quality of life. Currently, there are no defined therapeutic protocols to manage psychosis in TLE patients, as antipsychotic agents may induce epileptic seizures and are associated with severe side effects and pharmacokinetic and pharmacodynamic interactions with antiepileptic drugs. Thus, novel treatment strategies are necessary. Several lines of evidence suggest that hippocampal hyperactivity is central to the pathology of both TLE and psychosis; therefore, restoring hippocampal activity back to normal levels may be a novel therapeutic approach for treating psychosis in TLE. In rodent models, increased activity in the ventral hippocampus (vHipp) results in aberrant dopamine system function, which is thought to underlie symptoms of psychosis. Indeed, we have previously demonstrated that targeting α5-containing γ-aminobutyric acid receptors (α5GABAARs), an inhibitory receptor abundant in the hippocampus, with positive allosteric modulators (PAMs), can restore dopamine system function in rodent models displaying hippocampal hyperactivity. Thus, we posited that α5-PAMs may be beneficial in a model used to study TLE. Here, we demonstrate that pilocarpine-induced TLE is associated with increased VTA dopamine neuron activity, an effect that was completely reversed by intra-vHipp administration of GL-II-73, a selective α5-PAM. Further, pilocarpine did not alter the hippocampal α5GABAAR expression or synaptic localization that may affect the efficacy of α5-PAMs. Taken together, these results suggest augmenting α5GABAAR function as a novel therapeutic modality for the treatment of psychosis in TLE. Full article
(This article belongs to the Special Issue GABA Signaling in Health and Disease in the Nervous System)
Show Figures

Figure 1

27 pages, 1997 KiB  
Systematic Review
Antioxidant Therapy Reduces Oxidative Stress, Restores Na,K-ATPase Function and Induces Neuroprotection in Rodent Models of Seizure and Epilepsy: A Systematic Review and Meta-Analysis
by Anderson Dutra de Melo, Victor Antonio Ferreira Freire, Ítalo Leonardo Diogo, Hérica de Lima Santos, Leandro Augusto Barbosa and Luciana Estefani Drumond de Carvalho
Antioxidants 2023, 12(7), 1397; https://doi.org/10.3390/antiox12071397 - 7 Jul 2023
Cited by 19 | Viewed by 2922
Abstract
Epilepsy is a neurological disorder characterized by epileptic seizures resulting from neuronal hyperexcitability, which may be related to failures in Na,K-ATPase activity and oxidative stress participation. We conducted this study to investigate the impact of antioxidant therapy on oxidative stress, Na,K-ATPase activity, seizure [...] Read more.
Epilepsy is a neurological disorder characterized by epileptic seizures resulting from neuronal hyperexcitability, which may be related to failures in Na,K-ATPase activity and oxidative stress participation. We conducted this study to investigate the impact of antioxidant therapy on oxidative stress, Na,K-ATPase activity, seizure factors, and mortality in rodent seizure/epilepsy models induced by pentylenetetrazol (PTZ), pilocarpine (PILO), and kainic acid (KA). After screening 561 records in the MEDLINE, EMBASE, Web of Science, Science Direct, and Scopus databases, 22 were included in the systematic review following the PRISMA guidelines. The meta-analysis included 14 studies and showed that in epileptic animals there was an increase in the oxidizing agents nitric oxide (NO) and malondialdehyde (MDA), with a reduction in endogenous antioxidants reduced glutathione (GSH) and superoxide dismutase (SO). The Na,K-ATPase activity was reduced in all areas evaluated. Antioxidant therapy reversed all of these parameters altered by seizure or epilepsy induction. In addition, there was a percentage decrease in the number of seizures and mortality, and a meta-analysis showed a longer seizure latency in animals using antioxidant therapy. Thus, this study suggests that the use of antioxidants promotes neuroprotective effects and mitigates the effects of epilepsy. The protocol was registered in the Prospective Register of Systematic Reviews (PROSPERO) CRD42022356960. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

31 pages, 1551 KiB  
Review
Zebrafish as an Innovative Tool for Epilepsy Modeling: State of the Art and Potential Future Directions
by Marta D’Amora, Alessandro Galgani, Maria Marchese, Francesco Tantussi, Ugo Faraguna, Francesco De Angelis and Filippo Sean Giorgi
Int. J. Mol. Sci. 2023, 24(9), 7702; https://doi.org/10.3390/ijms24097702 - 22 Apr 2023
Cited by 23 | Viewed by 4725
Abstract
This article discusses the potential of Zebrafish (ZF) (Danio Rerio), as a model for epilepsy research. Epilepsy is a neurological disorder affecting both children and adults, and many aspects of this disease are still poorly understood. In vivo and in vitro models derived [...] Read more.
This article discusses the potential of Zebrafish (ZF) (Danio Rerio), as a model for epilepsy research. Epilepsy is a neurological disorder affecting both children and adults, and many aspects of this disease are still poorly understood. In vivo and in vitro models derived from rodents are the most widely used for studying both epilepsy pathophysiology and novel drug treatments. However, researchers have recently obtained several valuable insights into these two fields of investigation by studying ZF. Despite the relatively simple brain structure of these animals, researchers can collect large amounts of data in a much shorter period and at lower costs compared to classical rodent models. This is particularly useful when a large number of candidate antiseizure drugs need to be screened, and ethical issues are minimized. In ZF, seizures have been induced through a variety of chemoconvulsants, primarily pentylenetetrazol (PTZ), kainic acid (KA), and pilocarpine. Furthermore, ZF can be easily genetically modified to test specific aspects of monogenic forms of human epilepsy, as well as to discover potential convulsive phenotypes in monogenic mutants. The article reports on the state-of-the-art and potential new fields of application of ZF research, including its potential role in revealing epileptogenic mechanisms, rather than merely assessing iatrogenic acute seizure modulation. Full article
Show Figures

Figure 1

Back to TopTop