Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = rock film mulching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5252 KiB  
Article
Application of Overground Rock Film Mulching (ORFM) Technology in Karst Rocky Desertification Farmland: Improving Soil Moisture Environment and Crop Root Growth
by Zhimeng Zhao, Jin Zhang and Rui Liu
Agronomy 2024, 14(6), 1265; https://doi.org/10.3390/agronomy14061265 - 12 Jun 2024
Viewed by 1178
Abstract
Overground rock is a prominent feature of rocky desertification landscape in karst farmland; however, people often pay attention to their adverse effects, leaving their positive effects on ecohydrological processes and plant growth as rarely studied and utilized. In this study, the effects of [...] Read more.
Overground rock is a prominent feature of rocky desertification landscape in karst farmland; however, people often pay attention to their adverse effects, leaving their positive effects on ecohydrological processes and plant growth as rarely studied and utilized. In this study, the effects of overground rock film mulching (ORFM) on soil water flow behavior, soil water content and temporal and spatial heterogeneity were investigated through a dye tracer test and soil moisture measurement. Moreover, the effects of this technology on the root characteristics of crops (maize and broad bean) were analyzed. The results showed that ORFM treatment significantly increased soil water content and its spatio-temporal heterogeneity by preventing preferential flow at the rock–soil interface. It suggested that this practice can provide a more favorable soil moisture environment for crop growth, which was confirmed by the differences in root characteristics of crops (maize and broad bean) under different treatments in this study. It was found that ORFM treatment reduced the root radial extent of crops but increased the root biomass and root bifurcation rate, which are widely considered to be key factors in improving the efficiency of fine root absorption. Therefore, we believe that ORFM has great potential to improve the effective use of soil water and agricultural water management in karst areas, which is essential for sustainable agricultural development in the region. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

13 pages, 2154 KiB  
Article
Effects of Film-Mulched Rock Outcrops on Rainwater Redistribution and Maize Growth in the Cropland of a Rocky Karst Area
by Zhimeng Zhao, Jiabin Deng, Jin Zhang and Youxin Shen
Water 2024, 16(2), 254; https://doi.org/10.3390/w16020254 - 11 Jan 2024
Cited by 4 | Viewed by 1384
Abstract
Film-mulched rock outcrops are a proven way to effectively prevent preferential flow at the rock–soil interface in rocky karst areas, but the impact on rainwater redistribution and maize growth in farmland areas has never been studied. This paper used the dye tracer method [...] Read more.
Film-mulched rock outcrops are a proven way to effectively prevent preferential flow at the rock–soil interface in rocky karst areas, but the impact on rainwater redistribution and maize growth in farmland areas has never been studied. This paper used the dye tracer method at a sprinkling intensity of 1 mm min−1 to study the rainwater redistribution in soils for three different treatments: away from rock (AR), close to rock (CR), and close to film-mulched rock (CFMR). The growth situation of maize (Zea mays L.) according to the different treatments was also studied. It was shown in the study that the rainwater gathered by rock outcrops was mainly confined only within a narrow flow path at the rock–soil interface in the CR treatment, with a preferential flow fraction of 35.78~55.54% and dyeing depth of 15.37~20.00 cm across the three dye application amounts (850 mL, 1700 mL, and 3400 mL) in contrast to the uniform distribution of the rainwater in the soil of the AR treatment, with a preferential flow fraction of 12.31~37.15% and dyeing depth of 6.93~14.00 cm. Interestingly, in the CFMR treatment, there was no preferential flow at the rock–soil interface benefiting from the film’s blocking action, and the redistribution of rainwater was mainly based on the matrix flow, with a preferential flow fraction of 24.93~39.62% and dyeing depth of 10.27~18.00 cm, indicating that the film-mulched rock outcrops improved the rock’s output capability for gathering rainwater into the surrounding soil. In addition, film-mulched rock outcrops can promote the growth of maize, as indicated by the results for plant height, stem diameter, maximum leaf area, SPAD value, and floral development of maize, which increased in order from AR, CR, to CFMR. Our study suggests that film-mulched rock outcrops have important implications for the efficient use of rainwater and the growth of crops in rocky karst areas, as well as in regions with similar geological characteristics. Full article
Show Figures

Figure 1

13 pages, 3970 KiB  
Article
Effect of Rock Film Mulching on Preferential Flow at Rock–Soil Interfaces in Rocky Karst Areas
by Zhimeng Zhao and Qinghe Wang
Water 2023, 15(9), 1775; https://doi.org/10.3390/w15091775 - 5 May 2023
Cited by 4 | Viewed by 2009
Abstract
Preferential flow is the most common form of water loss occurring at the interface between rock and soil (hereinafter referred to as “rock–soil interface”) in karst areas, and it is also one of the important factors causing soil water leakage into the underground. [...] Read more.
Preferential flow is the most common form of water loss occurring at the interface between rock and soil (hereinafter referred to as “rock–soil interface”) in karst areas, and it is also one of the important factors causing soil water leakage into the underground. Therefore, it is of great significance to cut off the pathway of soil water loss through control of preferential flow. In this experiment, rock film mulching (RFM) was used to control the preferential flow at the rock–soil interface, and its influence on the soil water infiltration pattern and soil water content was analyzed by simulating rainfall, dye tracer tests, and digging soil profiles. The results show that: (1) the RFM can significantly control the soil water loss at the rock–soil interface, (2) so that the water intercepted by the above-ground rocks changed from longitudinal infiltration to transverse diffusion, more water moved into the surrounding soil patches, and (3) the soil water content was significantly increased. These results indicate that the RFM has an important blocking effect on preferential flow at the rock–soil interface, which has important guiding significance for reducing soil water erosion in karst areas. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

31 pages, 43506 KiB  
Review
Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review
by Hossam S. El-Beltagi, Abdul Basit, Heba I. Mohamed, Iftikhar Ali, Sana Ullah, Ehab A. R. Kamel, Tarek A. Shalaby, Khaled M. A. Ramadan, Abdulmalik A. Alkhateeb and Hesham S. Ghazzawy
Agronomy 2022, 12(8), 1881; https://doi.org/10.3390/agronomy12081881 - 10 Aug 2022
Cited by 188 | Viewed by 45509
Abstract
This research was carried out in order to demonstrate that mulching the ground helps to conserve water, because agricultural sustainability in dryland contexts is threatened by drought, heat stress, and the injudicious use of scarce water during the cropping season by minimizing surface [...] Read more.
This research was carried out in order to demonstrate that mulching the ground helps to conserve water, because agricultural sustainability in dryland contexts is threatened by drought, heat stress, and the injudicious use of scarce water during the cropping season by minimizing surface evaporation. Improving soil moisture conservation is an ongoing priority in crop outputs where water resources are restricted and controlled. One of the reasons for the desire to use less water in agriculture is the rising demand brought on by the world’s growing population. In this study, the use of organic or biodegradable mulches was dominated by organic materials, while inorganic mulches are mostly comprised of plastic-based components. Plastic film, crop straw, gravel, volcanic ash, rock pieces, sand, concrete, paper pellets, and livestock manures are among the materials put on the soil surface. Mulching has several essential applications, including reducing soil water loss and soil erosion, enriching soil fauna, and improving soil properties and nutrient cycling in the soil. It also reduces the pH of the soil, which improves nutrient availability. Mulching reduces soil deterioration by limiting runoff and soil loss, and it increases soil water availability by reducing evaporation, managing soil temperature, or reducing crop irrigation requirements. This review paper extensively discusses the benefits of organic or synthetic mulches for crop production, as well as the uses of mulching in soil and water conservation. As a result, it is very important for farmers to choose mulching rather than synthetic applications. Full article
(This article belongs to the Special Issue Sustainable Agronomical Practices for Saving Water Supply)
Show Figures

Figure 1

Back to TopTop