Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = rippled electron beam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4096 KiB  
Article
Fs-Laser-Induced Micro- and Nanostructures on Polycarbonate and Cellulose Acetate Butyrate for Cell Alignment
by Lukas Wagner, Werner Baumgartner, Agnes Weth, Sebastian Lifka and Johannes Heitz
Appl. Sci. 2025, 15(12), 6754; https://doi.org/10.3390/app15126754 - 16 Jun 2025
Viewed by 378
Abstract
Laser-generated structures have a huge potential to induce an alignment of biological cells, which may be important for various fields in medicine and biotechnology. We describe the formation of fs-laser-induced micro- and nanostructures for achieving the directed growth of Schwann cells, a type [...] Read more.
Laser-generated structures have a huge potential to induce an alignment of biological cells, which may be important for various fields in medicine and biotechnology. We describe the formation of fs-laser-induced micro- and nanostructures for achieving the directed growth of Schwann cells, a type of glial cell that can support the regeneration of nerve pathways by guiding the neuronal axons in the direction of their alignment. Polymer surfaces, i.e., polycarbonate (PC) or cellulose acetate butyrate (CAB), were exposed to the beam of a 1040 nm Yb-based amplified fs-laser system with a pulse length of about 350 fs. With appropriate parameters, the laser exposure resulted in a surface topography with oriented micro-grooves, which, for PC, were covered with nano-ripples. Schwann cell growth on these substrates was inspected after 3 to 5 days of cultivation by means of scanning electron microscopy (SEM). We show that Schwann cells can grow in a certain direction, predetermined by micro-groove or nano-ripple orientation. In contrast, cells cultivated on randomly oriented nanofibers or unstructured surfaces show an omnidirectional growth behavior. This method may be used in the future to produce nerve conduits for the treatment of injuries to the peripheral nervous system. Full article
(This article belongs to the Special Issue Ultrafast and Nonlinear Laser Applications)
Show Figures

Figure 1

13 pages, 4280 KiB  
Article
Performance Characteristics of the Battery-Operated Silicon PIN Diode Detector with an Integrated Preamplifier and Data Acquisition Module for Fusion Particle Detection
by Allan Xi Chen, Benjamin F. Sigal, John Martinis, Alfred YiuFai Wong, Alexander Gunn, Matthew Salazar, Nawar Abdalla and Kai-Jian Xiao
J. Nucl. Eng. 2025, 6(2), 15; https://doi.org/10.3390/jne6020015 - 15 May 2025
Viewed by 672
Abstract
We present the performance and application of a commercial off-the-shelf Si PIN diode (Hamamatsu S14605) as a charged particle detector in a compact ion beam system (IBS) capable of generating D–D and p–B fusion charged particles. This detector is inexpensive, widely available, and [...] Read more.
We present the performance and application of a commercial off-the-shelf Si PIN diode (Hamamatsu S14605) as a charged particle detector in a compact ion beam system (IBS) capable of generating D–D and p–B fusion charged particles. This detector is inexpensive, widely available, and operates in photoconductive mode under a reverse bias voltage of 12 V, supplied by an A23 battery. A charge-sensitive preamplifier (CSP) is mounted on the backside of the detector’s four-layer PCB and powered by two ±3 V lithium batteries (A123). Both the detector and CSP are housed together on the vacuum side of the IBS, facing the fusion target. The system employs a CF-2.75-flanged DB-9 connector feedthrough to supply the signal, bias voltage, and rail voltages. To mitigate the high sensitivity of the detector to optical light, a thin aluminum foil assembly is used to block optical emissions from the ion beam and target. Charged particles generate step responses at the preamplifier output, with pulse rise times in the order of 0.2 to 0.3 µs. These signals are recorded using a custom-built data acquisition unit, which features an optical fiber data link to ensure the electrical isolation of the detector electronics. Subsequent digital signal processing is employed to optimally shape the pulses using a CR-RCn filter to produce Gaussian-shaped signals, enabling the accurate extraction of energy information. Performance results indicate that the detector’s baseline RMS ripple noise can be as low as 0.24 mV. Under actual laboratory conditions, the estimated signal-to-noise ratios (S/N) for charged particles from D–D fusion—protons, tritons, and helions—are approximately 225, 75, and 41, respectively. Full article
Show Figures

Graphical abstract

26 pages, 5282 KiB  
Article
Nanoscale Dots, Grids, Ripples, and Hierarchical Structures on PET by UV Laser Processing
by Gerda Buchberger, Martin Kührer, Günter Hesser and Johannes Heitz
Photonics 2024, 11(2), 184; https://doi.org/10.3390/photonics11020184 - 18 Feb 2024
Cited by 2 | Viewed by 1788
Abstract
Nanostructures can be produced on poly(ethylene terephthalate) (PET) foils by using a krypton fluoride (KrF) excimer laser with a wavelength of 248 nm and a pulse duration of about 20 ns. We show that surface nanoripples, nanodots, nanogrids, and hybrid patterns of ripples [...] Read more.
Nanostructures can be produced on poly(ethylene terephthalate) (PET) foils by using a krypton fluoride (KrF) excimer laser with a wavelength of 248 nm and a pulse duration of about 20 ns. We show that surface nanoripples, nanodots, nanogrids, and hybrid patterns of ripples with dots or finer ripples on top can be fabricated. The effects of a water layer in front of the PET foil and of cooling during laser processing were investigated. For pattern formation, several irradiation parameters (pulse number, pulse energy, and polarization) were varied systematically. The spatial periods of the ripples were changed by adjusting the angle of incidence of the laser beam. All nanostructures were characterized by scanning electron microscopy, and relevant morphological parameters, such as peak-to-peak distances and spatial periods, were assessed. Shapes and heights of some structures were characterized by using focused ion beam cuts to avoid the tip-sample convolution effects typical of atomic force microscopy images. We further demonstrate nanoripple formation on PET foils as thin as 12 µm, 6 µm, and 1.4 µm. The remarkable variety of nanostructures on PET we present here enables customized fabrication for a wide range of applications. Full article
(This article belongs to the Special Issue Emerging Trends in Laser Processing Techniques)
Show Figures

Figure 1

8 pages, 5061 KiB  
Article
Recent Developments in MaMFIS Technology for the Production of Highly Charged Ions
by Vladimir P. Ovsyannikov, Andrei V. Nefiodov, Alexander Yu. Ramzdorf and Aleksandr A. Levin
Atoms 2022, 10(4), 120; https://doi.org/10.3390/atoms10040120 - 24 Oct 2022
Viewed by 2010
Abstract
We present results for the production of highly charged ions in a rippled electron beam propagating in a multi-section drift tube with different electrostatic potentials in an axial magnetic focusing field. The inner-shell ionization of target atoms by electron impact occurs in local [...] Read more.
We present results for the production of highly charged ions in a rippled electron beam propagating in a multi-section drift tube with different electrostatic potentials in an axial magnetic focusing field. The inner-shell ionization of target atoms by electron impact occurs in local ion traps formed at the electron-beam crossovers. The utmost electron current density achieved is assessed at ~10 kA/cm2. The successive ionization of cathode materials and working substances such as xenon and bismuth was investigated as a function of the confinement time. The characteristic X-ray radiation from ions including Ir62+, Ce48+, Xe46+, and Bi60+ was detected. It is shown that it is possible to extract highly charged ions from local ion traps for a certain geometry of the drift tube structure and a certain distribution of the electric potentials. Full article
(This article belongs to the Special Issue 20th International Conference on the Physics of Highly Charged Ions)
Show Figures

Figure 1

12 pages, 4971 KiB  
Article
A G-Band Broadband Continuous Wave Traveling Wave Tube for Wireless Communications
by Yuan Feng, Xingwang Bian, Bowen Song, Ying Li, Pan Pan and Jinjun Feng
Micromachines 2022, 13(10), 1635; https://doi.org/10.3390/mi13101635 - 29 Sep 2022
Cited by 10 | Viewed by 2913
Abstract
Development of a G-band broadband continuous wave (CW) traveling wave tube (TWT) for wireless communications is described in this paper. This device provides the saturation output power over 8 W and the saturation gain over 30.5 dB with a bandwidth of 27 GHz. [...] Read more.
Development of a G-band broadband continuous wave (CW) traveling wave tube (TWT) for wireless communications is described in this paper. This device provides the saturation output power over 8 W and the saturation gain over 30.5 dB with a bandwidth of 27 GHz. The maximum output power is 16 W and the bandwidth of 10 W output power is 23 GHz. The 3 dB bandwidth is greater than 12.3% of fc (center frequency). The gain ripple is less than 10 dB in band. A pencil beam of 50 mA and 20 kV is used and a transmission ratio over 93% is realized. The intercept power of the beam is less than 70 W and the TWT is conduction cooled through mounting plate and air fan, which makes the device capable of operating in continuous wave mode. A Pierce’s electron gun and periodic permanent magnets are employed. Chemical vapor deposition diamond disc is used in the input and output radio frequency (RF) windows to minimize the loss and voltage standing wave ratios of the traveling wave tube. Double stages deeply depressed collector is used for improving the total efficiency of the device, which can be over 5.5% in band. The weight of the device is 2.5 kg, and the packaged size is 330 mm × 70 mm × 70 mm. Full article
(This article belongs to the Special Issue Broadband Terahertz Devices and Communication Technologies)
Show Figures

Figure 1

13 pages, 6331 KiB  
Article
Polystyrene Thin Films Nanostructuring by UV Femtosecond Laser Beam: From One Spot to Large Surface
by Olga Shavdina, Hervé Rabat, Marylène Vayer, Agnès Petit, Christophe Sinturel and Nadjib Semmar
Nanomaterials 2021, 11(5), 1060; https://doi.org/10.3390/nano11051060 - 21 Apr 2021
Cited by 9 | Viewed by 3160
Abstract
In this work, direct irradiation by a Ti:Sapphire (100 fs) femtosecond laser beam at third harmonic (266 nm), with a moderate repetition rate (50 and 1000 Hz), was used to create regular periodic nanostructures upon polystyrene (PS) thin films. Typical Low Spatial Frequency [...] Read more.
In this work, direct irradiation by a Ti:Sapphire (100 fs) femtosecond laser beam at third harmonic (266 nm), with a moderate repetition rate (50 and 1000 Hz), was used to create regular periodic nanostructures upon polystyrene (PS) thin films. Typical Low Spatial Frequency LIPSSs (LSFLs) were obtained for 50 Hz, as well as for 1 kHz, in cases of one spot zone, and also using a line scanning irradiation. Laser beam fluence, repetition rate, number of pulses (or irradiation time), and scan velocity were optimized to lead to the formation of various periodic nanostructures. It was found that the surface morphology of PS strongly depends on the accumulation of a high number of pulses (103 to 107 pulses) at low energy (1 to 20 µJ/pulse). Additionally, heating the substrate from room temperature up to 97 °C during the laser irradiation modified the ripples’ morphology, particularly their amplitude enhancement from 12 nm (RT) to 20 nm. Scanning electron microscopy and atomic force microscopy were used to image the morphological features of the surface structures. Laser-beam scanning at a chosen speed allowed for the generation of well-resolved ripples on the polymer film and homogeneity over a large area. Full article
(This article belongs to the Special Issue Laser-Generated Periodic Nanostructures)
Show Figures

Figure 1

16 pages, 9062 KiB  
Article
FIB-SEM Investigation of Laser-Induced Periodic Surface Structures and Conical Surface Microstructures on D16T (AA2024-T4) Alloy
by Igor A. Salimon, Sakellaris Mailis, Alexey I. Salimon, Evgenij Skupnevskiy, Svetlana A. Lipovskikh, Iaroslava Shakhova, Artem V. Novikov, Timur F. Yagafarov and Alexander M. Korsunsky
Metals 2020, 10(1), 144; https://doi.org/10.3390/met10010144 - 17 Jan 2020
Cited by 5 | Viewed by 4207
Abstract
The use of aluminum alloy AA2024-T4 (Russian designation D16T) in applications requiring a high strength-to-weight ratio and fatigue resistance such as aircraft fuselage often demands the control and modification of surface properties. A promising route to surface conditioning of Al alloys is laser [...] Read more.
The use of aluminum alloy AA2024-T4 (Russian designation D16T) in applications requiring a high strength-to-weight ratio and fatigue resistance such as aircraft fuselage often demands the control and modification of surface properties. A promising route to surface conditioning of Al alloys is laser treatment. In the present work, the formation of ripples and conical microstructures under scanning with femtosecond (fs) laser pulses was investigated. Laser treatment was performed using 250 fs pulses of a 1033 nm Yb:YAG laser. The fluence of the pulses varied from 5 to 33 J/cm2. The scanning was repeated from 1 to 5 times for different areas of the sample. Treated areas were evaluated using focused ion beam (FIB)- scanning electron microscopy (SEM) imaging and sectioning, energy-dispersive X-ray (EDX) spectroscopy, atomic force microscopy (AFM), and confocal laser profilometry. The period of laser-induced periodic surface structures (LIPSS) and the average spacing of conical microstructures were deduced from SEM images by FFT. Unevenness of the treated areas was observed that is likely to have been caused by ablation debris. The structural and elemental changes of the material inside the conical microstructures was revealed by FIB-SEM and EDX. The underlying formation mechanisms of observed structures are discussed in this paper. Full article
(This article belongs to the Special Issue Advanced Surface Enhancement)
Show Figures

Figure 1

Back to TopTop