Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = ricin-based immunotoxins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4423 KiB  
Review
Fungal Ribotoxins: A Review of Potential Biotechnological Applications
by Miriam Olombrada, Rodrigo Lázaro-Gorines, Juan C. López-Rodríguez, Álvaro Martínez-del-Pozo, Mercedes Oñaderra, Moisés Maestro-López, Javier Lacadena, José G. Gavilanes and Lucía García-Ortega
Toxins 2017, 9(2), 71; https://doi.org/10.3390/toxins9020071 - 21 Feb 2017
Cited by 64 | Viewed by 10982
Abstract
Fungi establish a complex network of biological interactions with other organisms in nature. In many cases, these involve the production of toxins for survival or colonization purposes. Among these toxins, ribotoxins stand out as promising candidates for their use in biotechnological applications. They [...] Read more.
Fungi establish a complex network of biological interactions with other organisms in nature. In many cases, these involve the production of toxins for survival or colonization purposes. Among these toxins, ribotoxins stand out as promising candidates for their use in biotechnological applications. They constitute a group of highly specific extracellular ribonucleases that target a universally conserved sequence of RNA in the ribosome, the sarcin-ricin loop. The detailed molecular study of this family of toxic proteins over the past decades has highlighted their potential in applied research. Remarkable examples would be the recent studies in the field of cancer research with promising results involving ribotoxin-based immunotoxins. On the other hand, some ribotoxin-producer fungi have already been studied in the control of insect pests. The recent role of ribotoxins as insecticides could allow their employment in formulas and even as baculovirus-based biopesticides. Moreover, considering the important role of their target in the ribosome, they can be used as tools to study how ribosome biogenesis is regulated and, eventually, may contribute to a better understanding of some ribosomopathies. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

9 pages, 617 KiB  
Review
Plant Toxin-Based Immunotoxins for Cancer Therapy: A Short Overview
by Letizia Polito, Alice Djemil and Massimo Bortolotti
Biomedicines 2016, 4(2), 12; https://doi.org/10.3390/biomedicines4020012 - 1 Jun 2016
Cited by 66 | Viewed by 9884
Abstract
Immunotoxins are chimeric proteins obtained by linking a toxin to either an intact antibody or an antibody fragment. Conjugation can be obtained by chemical or genetic engineering, where the latter yields recombinant conjugates. An essential requirement is that the target molecule recognized by [...] Read more.
Immunotoxins are chimeric proteins obtained by linking a toxin to either an intact antibody or an antibody fragment. Conjugation can be obtained by chemical or genetic engineering, where the latter yields recombinant conjugates. An essential requirement is that the target molecule recognized by the antibody is confined to the cell population to be deleted, or at least that it is not present on stem cells or other cell types essential for the organism’s survival. Hundreds of different studies have demonstrated the potential for applying immunotoxins to many models in pre-clinical studies and in clinical trials. Immunotoxins can be theoretically used to eliminate any unwanted cell responsible for a pathological condition. The best results have been obtained in cancer therapy, especially in hematological malignancies. Among plant toxins, the most frequently employed to generate immunotoxins are ribosome-inactivating proteins, the most common being ricin. This review summarizes the various approaches and results obtained in the last four decades by researchers in the field of plant toxin-based immunotoxins for cancer therapy. Full article
Show Figures

Graphical abstract

34 pages, 337 KiB  
Review
Ricin and Ricin-Containing Immunotoxins: Insights into Intracellular Transport and Mechanism of action in Vitro
by Monika Słomińska-Wojewódzka and Kirsten Sandvig
Antibodies 2013, 2(2), 236-269; https://doi.org/10.3390/antib2020236 - 19 Apr 2013
Cited by 34 | Viewed by 16173
Abstract
Ricin is a type II ribosome inactivating protein (RIP) isolated from castor beans. Its high toxicity classifies it as a possible biological weapon. On the other hand, ricin linked to specific monoclonal antibodies or used in other conjugates has powerful medical applications. Ricin [...] Read more.
Ricin is a type II ribosome inactivating protein (RIP) isolated from castor beans. Its high toxicity classifies it as a possible biological weapon. On the other hand, ricin linked to specific monoclonal antibodies or used in other conjugates has powerful medical applications. Ricin consists of an A-chain (RTA) that damages ribosomes and inhibits protein synthesis, and a B-chain that plays a role in binding and cellular uptake. A number of recent studies have demonstrated that ricin-induced inhibition of protein synthesis is not the only mechanism responsible for cell death. It turns out that ricin is able to induce apoptosis in different cell lines and multiple organs in animals. However, the molecular link between protein synthesis inhibition and ricin-dependent triggering of apoptotic cell death is unclear. This review describes the intracellular transport of ricin and ricin-based immunotoxins and their mechanism of action in different non-malignant and cancer cell lines. Moreover, various ricin-containing immunotoxins, their composition, medical applications and side-effects will be described and discussed. Understanding the mechanism of action of ricin-based immunotoxins will facilitate construction of effectively acting immunotoxins that can be used in the clinic for cancer treatment. Full article
(This article belongs to the Special Issue Recombinant Immunotoxins)
Show Figures

Figure 1

11 pages, 469 KiB  
Article
A Comparison of the Anti-Tumor Effects of a Chimeric versus Murine Anti-CD19 Immunotoxins on Human B Cell Lymphoma and Pre-B Acute Lymphoblastic Leukemia Cell Lines
by Lydia K. Tsai, Laurentiu M. Pop, Xiaoyun Liu and Ellen S. Vitetta
Toxins 2011, 3(4), 409-419; https://doi.org/10.3390/toxins3040409 - 6 Apr 2011
Cited by 3 | Viewed by 8401
Abstract
Precursor B cell acute lymphoblastic leukemia (pre-B ALL) affects five to six thousand adults and almost three thousand children every year. Approximately 25% of the children and 60% of the adults die from their disease, highlighting the need for new therapies that complement [...] Read more.
Precursor B cell acute lymphoblastic leukemia (pre-B ALL) affects five to six thousand adults and almost three thousand children every year. Approximately 25% of the children and 60% of the adults die from their disease, highlighting the need for new therapies that complement rather than overlap chemotherapy and bone marrow transplantation. Immunotherapy is a class of therapies where toxicities and mechanisms of action do not overlap with those of chemotherapy. Because CD19 is a B cell- restricted membrane antigen that is expressed on the majority of pre-B tumor cells, a CD19-based immunotherapy is being developed for ALL. In this study, the anti-tumor activities of immunotoxins (ITs) constructed by conjugating a murine monoclonal antibody (MAb), HD37, or its chimeric (c) construct to recombinant ricin toxin A chain (rRTA) were compared both in vitro using human pre-B ALL and Burkitt’s lymphoma cell lines and in vivo using a disseminated human pre-B ALL tumor cell xenograft model. The murine and chimeric HD37 IT constructs were equally cytotoxic to pre-B ALL and Burkitt’s lymphoma cells in vitro and their use in vivo resulted in equivalent increases in survival of SCID mice with human pre-B ALL tumors when compared with control mice. Full article
(This article belongs to the Special Issue Immunotoxins)
Show Figures

Figure 1

Back to TopTop