Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = ribosomal P stalk protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3615 KiB  
Article
Targeting RPLP2 Triggers DLBCL Ferroptosis by Decreasing FXN Expression
by Jiaxing Guo, Bokang Yan, Lingshu Li, Yuanhao Peng, Weiwei Lai and Chanjuan Shen
Biomedicines 2025, 13(6), 1320; https://doi.org/10.3390/biomedicines13061320 - 28 May 2025
Viewed by 472
Abstract
Background/Objectives: Ribosomal Protein Lateral Stalk Subunit P2 (RPLP2), an important ribosomal protein, is mainly involved in modulating protein synthesis and plays an essential role in the carcinogenesis of many cancers. However, its precise impact on diffuse large B-cell lymphoma (DLBCL) remains unknown. Methods: [...] Read more.
Background/Objectives: Ribosomal Protein Lateral Stalk Subunit P2 (RPLP2), an important ribosomal protein, is mainly involved in modulating protein synthesis and plays an essential role in the carcinogenesis of many cancers. However, its precise impact on diffuse large B-cell lymphoma (DLBCL) remains unknown. Methods: This study utilized siRNA to knock down RPLP2, aiming to investigate its role in DLBCL progression. RT-qPCR and immunohistochemistry (IHC) were employed to assess RPLP2 and frataxin (FXN) expression levels in DLBCL. CCK8 and colony formation assays measured cell proliferation inhibition upon RPLP2 deletion, while transwell migration assays analyzed reduced cell motility. Lipid ROS and iron assays quantified ferroptosis markers to elucidate RPLP2’s regulation of FXN-mediated ferroptosis. Xenograft mouse models validated tumor suppression effects in vivo. Results: Here, we reveal that elevated RPLP2 expression is significantly correlated to unfavorable prognosis in DLBCL patients. In addition, we demonstrate that RPLP2 deletion dramatically reduces the cell proliferation and migration of DLBCL. Besides, knockdown of RPLP2 triggers ferroptosis via regulating ferroptosis suppressor FXN activity. Moreover, we discover that Destruxin b could target RPLP2 to suppress the development of DLBCL. Lastly, the combination of Destruxin b with Dox remarkably improves the anti-tumor effect. Conclusions: In general, the present study reveals the oncogenic role of RPLP2 in DLBCL, uncovers an unrecognized regulatory axis of ferroptosis, and identifies a specific inhibitor targeting RPLP2 to restrain DLBCL progression, suggesting that RPLP2 could be a potential target for DLBCL treatment. Full article
(This article belongs to the Special Issue The Role of Iron in Human Diseases)
Show Figures

Figure 1

14 pages, 5140 KiB  
Article
Optimal Reference Genes for Gene Expression Analysis of Overmating Stress-Induced Aging and Natural Aging in Male Macrobrachium rosenbergii
by Yunpeng Fan, Qiang Gao, Haihua Cheng, Xilian Li, Yang Xu, Huwei Yuan, Xiudan Yuan, Songsong Bao, Chu Kuan and Haiqi Zhang
Int. J. Mol. Sci. 2025, 26(8), 3465; https://doi.org/10.3390/ijms26083465 - 8 Apr 2025
Viewed by 574
Abstract
Functional gene expression is closely linked to an organism’s physiology and can be quantified using Real-Time Quantitative Reverse Transcription PCR (RT-qPCR). However, the stability of reference gene expression is not absolute, which may impact the accuracy of RT-qPCR results. In this study, we [...] Read more.
Functional gene expression is closely linked to an organism’s physiology and can be quantified using Real-Time Quantitative Reverse Transcription PCR (RT-qPCR). However, the stability of reference gene expression is not absolute, which may impact the accuracy of RT-qPCR results. In this study, we evaluated the suitability of nine genes including receptor for activated protein kinase c1 (rack1), ribosomal protein L6 (rpl6), ribosomal protein L9 (rpl9), ribosomal protein S2 (rps2), ribosomal protein S18 (rps18), ribosomal protein lateral stalk subunit P0 (rplp0), eukaryotic translation elongation factor 1β (eef1b), eukaryotic translation initiation factor 4a (eif4a), eukaryotic translation initiation factor 5a (eif5a) analyzed from RNA sequencing (RNA-Seq) data in addition to three genes including eukaryotic elongation factor 1α (eef1a), β-actin (actb), and glyceraldehyde 3-phosphate dehydrogenase (gapdh) selected from the literature to obtain the best internal controls in the RT-qPCR analysis of M. rosenbergii under overmating stress and natural aging. RefFinder was used to comprehensively evaluate the stability of the candidate reference genes. The initial results showed that three genes (eif5a, rps18, and rplp0) from the RNA-Seq data had relatively stable expression levels, which were more stable than those of the three commonly used reference genes. Eif5a and rps18 were the best combination for the RT-qPCR analysis of M. rosenbergii under overmating stress and aging. Further analysis indicated that eif5a might be the best reference gene for the study of M. rosenbergii. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2525 KiB  
Article
RNAi-Mediated Knockdown of Acidic Ribosomal Stalk Protein P1 Arrests Egg Development in Adult Female Yellow Fever Mosquitoes, Aedes aegypti
by Mahesh Lamsal, Hailey A. Luker, Matthew Pinch and Immo A. Hansen
Insects 2024, 15(2), 84; https://doi.org/10.3390/insects15020084 - 24 Jan 2024
Cited by 2 | Viewed by 3394
Abstract
After taking a blood meal, the fat body of the adult female yellow fever mosquito, Aedes aegypti, switches from a previtellogenic state of arrest to an active state of synthesizing large quantities of yolk protein precursors (YPPs) that are crucial for egg [...] Read more.
After taking a blood meal, the fat body of the adult female yellow fever mosquito, Aedes aegypti, switches from a previtellogenic state of arrest to an active state of synthesizing large quantities of yolk protein precursors (YPPs) that are crucial for egg development. The synthesis of YPPs is regulated at both the transcriptional and translational levels. Previously, we identified the cytoplasmic protein general control nonderepressible 1 (GCN1) as a part of the translational regulatory pathway for YPP synthesis. In the current study, we used the C-terminal end of GCN1 to screen for protein–protein interactions and identified 60S acidic ribosomal protein P1 (P1). An expression analysis and RNAi-mediated knockdown of P1 was performed to further investigate the role of P1 in mosquito reproduction. We showed that in unfed (absence of a blood meal) adult A. aegypti mosquitoes, P1 was expressed ubiquitously in the mosquito organs and tissues tested. We also showed that the RNAi-mediated knockdown of P1 in unfed adult female mosquitoes resulted in a strong, transient knockdown with observable phenotypic changes in ovary length and egg deposition. Our results suggest that 60S acidic ribosomal protein P1 is necessary for mosquito reproduction and is a promising target for mosquito population control. Full article
(This article belongs to the Special Issue Challenges and Future Trends of RNA Interference in Insects)
Show Figures

Figure 1

19 pages, 1537 KiB  
Article
Validation of Endogenous Control Genes by Real-Time Quantitative Reverse Transcriptase Polymerase Chain Reaction for Acute Leukemia Gene Expression Studies
by Flávia Melo Cunha de Pinho Pessoa, Vitória Beatriz de Jesus Viana, Marcelo Braga de Oliveira, Beatriz Maria Dias Nogueira, Rodrigo Monteiro Ribeiro, Deivide de Sousa Oliveira, Germison Silva Lopes, Ricardo Parente Garcia Vieira, Manoel Odorico de Moraes Filho, Maria Elisabete Amaral de Moraes, André Salim Khayat, Fabiano Cordeiro Moreira and Caroline Aquino Moreira-Nunes
Genes 2024, 15(2), 151; https://doi.org/10.3390/genes15020151 - 24 Jan 2024
Cited by 5 | Viewed by 3380
Abstract
Reference genes are used as internal reaction controls for gene expression analysis, and for this reason, they are considered reliable and must meet several important criteria. In view of the absence of studies regarding the best reference gene for the analysis of acute [...] Read more.
Reference genes are used as internal reaction controls for gene expression analysis, and for this reason, they are considered reliable and must meet several important criteria. In view of the absence of studies regarding the best reference gene for the analysis of acute leukemia patients, a panel of genes commonly used as endogenous controls was selected from the literature for stability analysis: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Abelson murine leukemia viral oncogene human homolog 1 (ABL), Hypoxanthine phosphoribosyl-transferase 1 (HPRT1), Ribosomal protein lateral stalk subunit P0 (RPLP0), β-actin (ACTB) and TATA box binding protein (TBP). The stability of candidate reference genes was analyzed according to three statistical methods of assessment, namely, NormFinder, GeNorm and R software (version 4.0.3). From this study’s analysis, it was possible to identify that the endogenous set composed of ACTB, ABL, TBP and RPLP0 demonstrated good performances and stable expressions between the analyzed groups. In addition to that, the GAPDH and HPRT genes could not be classified as good reference genes, considering that they presented a high standard deviation and great variability between groups, indicating low stability. Given these findings, this study suggests the main endogenous gene set for use as a control/reference for the gene expression in peripheral blood and bone marrow samples from patients with acute leukemias is composed of the ACTB, ABL, TBP and RPLP0 genes. Researchers may choose two to three of these housekeeping genes to perform data normalization. Full article
Show Figures

Figure 1

23 pages, 1358 KiB  
Review
Protein–Protein Interactions of Seryl-tRNA Synthetases with Emphasis on Human Counterparts and Their Connection to Health and Disease
by Morana Dulic, Vlatka Godinic-Mikulcic, Mario Kekez, Valentina Evic and Jasmina Rokov-Plavec
Life 2024, 14(1), 124; https://doi.org/10.3390/life14010124 - 15 Jan 2024
Cited by 3 | Viewed by 4091
Abstract
Seryl-tRNA synthetases (SerRSs), members of the aminoacyl-tRNA synthetase family, interact with diverse proteins, enabling SerRSs to enhance their role in the translation of the genetic message or to perform alternative functions in cellular processes beyond translation. Atypical archaeal SerRS interacts with arginyl-tRNA synthetase [...] Read more.
Seryl-tRNA synthetases (SerRSs), members of the aminoacyl-tRNA synthetase family, interact with diverse proteins, enabling SerRSs to enhance their role in the translation of the genetic message or to perform alternative functions in cellular processes beyond translation. Atypical archaeal SerRS interacts with arginyl-tRNA synthetase and proteins of the ribosomal P-stalk to optimize translation through tRNA channeling. The complex between yeast SerRS and peroxin Pex21p provides a connection between translation and peroxisome function. The partnership between Arabidopsis SerRS and BEN1 indicates a link between translation and brassinosteroid metabolism and may be relevant in plant stress response mechanisms. In Drosophila, the unusual heterodimeric mitochondrial SerRS coordinates mitochondrial translation and replication via interaction with LON protease. Evolutionarily conserved interactions of yeast and human SerRSs with m3C32 tRNA methyltransferases indicate coordination between tRNA modification and aminoacylation in the cytosol and mitochondria. Human cytosolic SerRS is a cellular hub protein connecting translation to vascular development, angiogenesis, lipogenesis, and telomere maintenance. When translocated to the nucleus, SerRS acts as a master negative regulator of VEGFA gene expression. SerRS alone or in complex with YY1 and SIRT2 competes with activating transcription factors NFκB1 and c-Myc, resulting in balanced VEGFA expression important for proper vascular development and angiogenesis. In hypoxia, SerRS phosphorylation diminishes its binding to the VEGFA promoter, while the lack of nutrients triggers SerRS glycosylation, reducing its nuclear localization. Additionally, SerRS binds telomeric DNA and cooperates with the shelterin protein POT1 to regulate telomere length and cellular senescence. As an antitumor and antiangiogenic factor, human cytosolic SerRS appears to be a promising drug target and therapeutic agent for treating cancer, cardiovascular diseases, and possibly obesity and aging. Full article
(This article belongs to the Special Issue Protein–Protein Interactions in Health and Disease)
Show Figures

Graphical abstract

19 pages, 5964 KiB  
Article
The Biological Action and Structural Characterization of Eryngitin 3 and 4, Ribotoxin-like Proteins from Pleurotus eryngii Fruiting Bodies
by Sara Ragucci, Nicola Landi, Lucía Citores, Rosario Iglesias, Rosita Russo, Angela Clemente, Michele Saviano, Paolo Vincenzo Pedone, Angela Chambery, José Miguel Ferreras and Antimo Di Maro
Int. J. Mol. Sci. 2023, 24(19), 14435; https://doi.org/10.3390/ijms241914435 - 22 Sep 2023
Cited by 5 | Viewed by 1889
Abstract
Ribotoxin-like proteins (RL-Ps) are specific ribonucleases found in mushrooms that are able to cleave a single phosphodiester bond located in the sarcin–ricin loop (SRL) of the large rRNA. The cleaved SRL interacts differently with some ribosomal proteins (P-stalk). This action blocks protein synthesis [...] Read more.
Ribotoxin-like proteins (RL-Ps) are specific ribonucleases found in mushrooms that are able to cleave a single phosphodiester bond located in the sarcin–ricin loop (SRL) of the large rRNA. The cleaved SRL interacts differently with some ribosomal proteins (P-stalk). This action blocks protein synthesis because the damaged ribosomes are unable to interact with elongation factors. Here, the amino acid sequences of eryngitin 3 and 4, RL-Ps isolated from Pleurotus eryngii fruiting bodies, were determined to (i) obtain structural information on this specific ribonuclease family from edible mushrooms and (ii) explore the structural determinants which justify their different biological and antipathogenic activities. Indeed, eryngitin 3 exhibited higher toxicity with respect to eryngitin 4 against tumoral cell lines and model fungi. Structurally, eryngitin 3 and 4 consist of 132 amino acids, most of them identical and exhibiting a single free cysteinyl residue. The amino acidic differences between the two toxins are (i) an additional phenylalanyl residue at the N-terminus of eryngitin 3, not retrieved in eryngitin 4, and (ii) an additional arginyl residue at the C-terminus of eryngitin 4, not retrieved in eryngitin 3. The 3D models of eryngitins show slight differences at the N- and C-terminal regions. In particular, the positive electrostatic surface at the C-terminal of eryngitin 4 is due to the additional arginyl residue not retrieved in eryngitin 3. This additional positive charge could interfere with the binding to the SRL (substrate) or with some ribosomal proteins (P-stalk structure) during substrate recognition. Full article
(This article belongs to the Special Issue Structure and Function of Ribosomal Proteins 2024)
Show Figures

Figure 1

21 pages, 3312 KiB  
Article
Mutational Analyses of the Cysteine-Rich Domain of Yvh1, a Protein Required for Translational Competency in Yeast
by Hannah Zang, Robert Shackelford, Alice Bewley and Alexander E. Beeser
Biology 2022, 11(8), 1246; https://doi.org/10.3390/biology11081246 - 22 Aug 2022
Cited by 1 | Viewed by 2324
Abstract
Ribosome assembly is a complex biological process facilitated by >200 trans-acting factors (TAFs) that function as scaffolds, place-holders or complex remodelers to promote efficient and directional ribosomal subunit assembly but are not themselves part of functional ribosomes. One such yeast TAF is [...] Read more.
Ribosome assembly is a complex biological process facilitated by >200 trans-acting factors (TAFs) that function as scaffolds, place-holders or complex remodelers to promote efficient and directional ribosomal subunit assembly but are not themselves part of functional ribosomes. One such yeast TAF is encoded by Mrt4 which assembles onto pre-60S complexes in the nuclear compartment and remains bound to pre-60S complexes as they are exported into the cytoplasm. There, Mrt4 is displaced from pre-60S complexes facilitating the subsequent addition of the ribosomal stalk complex (P0/P1/P2). Ribosomal stalk proteins interact with translational GTPases (trGTPase) which facilitate and control protein synthesis on the ribosome. The rRNA-binding domain of Mrt4 is structurally similar to P0, with both proteins binding to the same interface of pre-60S subunits in a mutually exclusive manner; the addition of the ribosomal stalk therefore requires the displacement of Mrt4 from pre-60S subunits. Mrt4 removal requires the C-terminal cysteine-rich domain (CRD) of the dual-specificity phosphatase Yvh1. Unlike many other TAFs, yeast lacking Yvh1 are viable but retain Mrt4 on cytoplasmic pre-60S complexes precluding ribosomal stalk addition. Although Yvh1’s role in Mrt4 removal is well established, how Yvh1 accomplishes this is largely unknown. Here, we report an unbiased genetic screen to isolate Yvh1 variants that fail to displace Mrt4 from pre-60S ribosomes. Bioorthogonal non-canonical amino acid tagging (BONCAT) approaches demonstrate that these YVH1 loss-of-function variants also display defects in nascent protein production. The further characterization of one LOF variant, Yvh1F283L, establishes it as an expression-dependent, dominant-negative variant capable of interfering with endogenous Yvh1 function, and we describe how this Yvh1 variant can be used as a novel probe to better understand ribosome maturation and potentially ribosome heterogeneity in eukaryotes. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

16 pages, 2091 KiB  
Article
CAG Repeat Instability in the Peripheral and Central Nervous System of Transgenic Huntington’s Disease Monkeys
by In K. Cho, Faye Clever, Gordon Hong and Anthony W. S. Chan
Biomedicines 2022, 10(8), 1863; https://doi.org/10.3390/biomedicines10081863 - 2 Aug 2022
Cited by 2 | Viewed by 3413
Abstract
Huntington’s Disease (HD) is an autosomal dominant disease that results in severe neurodegeneration with no cure. HD is caused by the expanded CAG trinucleotide repeat (TNR) on the Huntingtin gene (HTT). Although the somatic and germline expansion of the CAG repeats [...] Read more.
Huntington’s Disease (HD) is an autosomal dominant disease that results in severe neurodegeneration with no cure. HD is caused by the expanded CAG trinucleotide repeat (TNR) on the Huntingtin gene (HTT). Although the somatic and germline expansion of the CAG repeats has been well-documented, the underlying mechanisms had not been fully delineated. Increased CAG repeat length is associated with a more severe phenotype, greater TNR instability, and earlier age of onset. The direct relationship between CAG repeat length and molecular pathogenesis makes TNR instability a useful measure of symptom severity and tissue susceptibility. Thus, we examined the tissue-specific TNR instability of transgenic nonhuman primate models of Huntington’s disease. Our data show a similar profile of CAG repeat expansion in both rHD1 and rHD7, where high instability was observed in testis, liver, caudate, and putamen. CAG repeat expansion was observed in all tissue samples, and tissue- and CAG repeat size-dependent expansion was observed. Correlation analysis of CAG repeat expansion and the gene expression profile of four genes in different tissues, clusterin (CLU), transferrin (TF), ribosomal protein lateral stalk subunit P1 (RPLP1), and ribosomal protein L13a (RPL13A), showed a strong correlation with CAG repeat instability. Overall, our data, along with previously published studies, can be used for studying the biology of CAG repeat instability and identifying new therapeutic targets. Full article
Show Figures

Figure 1

13 pages, 1472 KiB  
Article
Peptide Mimics of the Ribosomal P Stalk Inhibit the Activity of Ricin A Chain by Preventing Ribosome Binding
by Xiao-Ping Li, Jennifer N. Kahn and Nilgun E. Tumer
Toxins 2018, 10(9), 371; https://doi.org/10.3390/toxins10090371 - 13 Sep 2018
Cited by 15 | Viewed by 4054
Abstract
Ricin A chain (RTA) depurinates the sarcin/ricin loop (SRL) by interacting with the C-termini of the ribosomal P stalk. The ribosome interaction site and the active site are located on opposite faces of RTA. The interaction with P proteins allows RTA to depurinate [...] Read more.
Ricin A chain (RTA) depurinates the sarcin/ricin loop (SRL) by interacting with the C-termini of the ribosomal P stalk. The ribosome interaction site and the active site are located on opposite faces of RTA. The interaction with P proteins allows RTA to depurinate the SRL on the ribosome at physiological pH with an extremely high activity by orienting the active site towards the SRL. Therefore, if an inhibitor disrupts RTA–ribosome interaction by binding to the ribosome binding site of RTA, it should inhibit the depurination activity. To test this model, we synthesized peptides mimicking the last 3 to 11 amino acids of P proteins and examined their interaction with wild-type RTA and ribosome binding mutants by Biacore. We measured the inhibitory activity of these peptides on RTA-mediated depurination of yeast and rat liver ribosomes. We found that the peptides interacted with the ribosome binding site of RTA and inhibited depurination activity by disrupting RTA–ribosome interactions. The shortest peptide that could interact with RTA and inhibit its activity was four amino acids in length. RTA activity was inhibited by disrupting its interaction with the P stalk without targeting the active site, establishing the ribosome binding site as a new target for inhibitor discovery. Full article
(This article belongs to the Special Issue Ricin Toxins)
Show Figures

Figure 1

15 pages, 3285 KiB  
Review
Structural and Functional Investigation and Pharmacological Mechanism of Trichosanthin, a Type 1 Ribosome-Inactivating Protein
by Wei-Wei Shi, Kam-Bo Wong and Pang-Chui Shaw
Toxins 2018, 10(8), 335; https://doi.org/10.3390/toxins10080335 - 20 Aug 2018
Cited by 20 | Viewed by 6538
Abstract
Trichosanthin (TCS) is an RNA N-glycosidase that depurinates adenine-4324 in the conserved α-sarcin/ricin loop (α-SRL) of rat 28 S ribosomal RNA (rRNA). TCS has only one chain, and is classified as type 1 ribosome-inactivating protein (RIP). Our structural studies revealed that TCS [...] Read more.
Trichosanthin (TCS) is an RNA N-glycosidase that depurinates adenine-4324 in the conserved α-sarcin/ricin loop (α-SRL) of rat 28 S ribosomal RNA (rRNA). TCS has only one chain, and is classified as type 1 ribosome-inactivating protein (RIP). Our structural studies revealed that TCS consists of two domains, with five conserved catalytic residues Tyr70, Tyr111, Glu160, Arg163 and Phe192 at the active cleft formed between them. We also found that the structural requirements of TCS to interact with the ribosomal stalk protein P2 C-terminal tail. The structural analyses suggest TCS attacks ribosomes by first binding to the C-terminal domain of ribosomal P protein. TCS exhibits a broad spectrum of biological and pharmacological activities including anti-tumor, anti-virus, and immune regulatory activities. This review summarizes an updated knowledge in the structural and functional studies and the mechanism of its multiple pharmacological effects. Full article
(This article belongs to the Special Issue Toxicity of Plant Toxins in Medical Herbs)
Show Figures

Figure 1

12 pages, 3680 KiB  
Article
Crystal Structure of Ribosome-Inactivating Protein Ricin A Chain in Complex with the C-Terminal Peptide of the Ribosomal Stalk Protein P2
by Wei-Wei Shi, Yun-Sang Tang, See-Yuen Sze, Zhen-Ning Zhu, Kam-Bo Wong and Pang-Chui Shaw
Toxins 2016, 8(10), 296; https://doi.org/10.3390/toxins8100296 - 13 Oct 2016
Cited by 32 | Viewed by 8292
Abstract
Ricin is a type 2 ribosome-inactivating protein (RIP), containing a catalytic A chain and a lectin-like B chain. It inhibits protein synthesis by depurinating the N-glycosidic bond at α-sarcin/ricin loop (SRL) of the 28S rRNA, which thereby prevents the binding of elongation factors [...] Read more.
Ricin is a type 2 ribosome-inactivating protein (RIP), containing a catalytic A chain and a lectin-like B chain. It inhibits protein synthesis by depurinating the N-glycosidic bond at α-sarcin/ricin loop (SRL) of the 28S rRNA, which thereby prevents the binding of elongation factors to the GTPase activation center of the ribosome. Here, we present the 1.6 Å crystal structure of Ricin A chain (RTA) complexed to the C-terminal peptide of the ribosomal stalk protein P2, which plays a crucial role in specific recognition of elongation factors and recruitment of eukaryote-specific RIPs to the ribosomes. Our structure reveals that the C-terminal GFGLFD motif of P2 peptide is inserted into a hydrophobic pocket of RTA, while the interaction assays demonstrate the structurally untraced SDDDM motif of P2 peptide contributes to the interaction with RTA. This interaction mode of RTA and P protein is in contrast to that with trichosanthin (TCS), Shiga-toxin (Stx) and the active form of maize RIP (MOD), implying the flexibility of the P2 peptide-RIP interaction, for the latter to gain access to ribosome. Full article
(This article belongs to the Special Issue Ribosome Inactivating Toxins)
Show Figures

Figure 1

19 pages, 473 KiB  
Review
Do the A Subunits Contribute to the Differences in the Toxicity of Shiga Toxin 1 and Shiga Toxin 2?
by Debaleena Basu and Nilgun E. Tumer
Toxins 2015, 7(5), 1467-1485; https://doi.org/10.3390/toxins7051467 - 29 Apr 2015
Cited by 24 | Viewed by 10290
Abstract
Shiga toxin producing Escherichia coli O157:H7 (STEC) is one of the leading causes of food-poisoning around the world. Some STEC strains produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2) or variants of either toxin, which are critical for the development of [...] Read more.
Shiga toxin producing Escherichia coli O157:H7 (STEC) is one of the leading causes of food-poisoning around the world. Some STEC strains produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2) or variants of either toxin, which are critical for the development of hemorrhagic colitis (HC) or hemolytic uremic syndrome (HUS). Currently, there are no therapeutic treatments for HC or HUS. E. coli O157:H7 strains carrying Stx2 are more virulent and are more frequently associated with HUS, which is the most common cause of renal failure in children in the US. The basis for the increased potency of Stx2 is not fully understood. Shiga toxins belong to the AB5 family of protein toxins with an A subunit, which depurinates a universally conserved adenine residue in the α-sarcin/ricin loop (SRL) of the 28S rRNA and five copies of the B subunit responsible for binding to cellular receptors. Recent studies showed differences in the structure, receptor binding, dependence on ribosomal proteins and pathogenicity of Stx1 and Stx2 and supported a role for the B subunit in differential toxicity. However, the current data do not rule out a potential role for the A1 subunits in the differential toxicity of Stx1 and Stx2. This review highlights the recent progress in understanding the differences in the A1 subunits of Stx1 and Stx2 and their role in defining toxicity. Full article
(This article belongs to the Special Issue Enterotoxins: Microbial Proteins and Host Cell Dysregulation)
Show Figures

Figure 1

Back to TopTop