Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = rhythmic motor pattern

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 801 KB  
Article
Dual-Task Interference Increases Variability in Sub-Second Repetitive Motor Timing
by Ivan Šerbetar and Asgeir Mamen
J. Funct. Morphol. Kinesiol. 2025, 10(4), 366; https://doi.org/10.3390/jfmk10040366 - 25 Sep 2025
Abstract
Objectives: Sub-second motor timing is critical for skilled performance in domains such as sport, music, and safety-critical multitasking; however, its robustness under cognitive load remains unresolved. Dual-task paradigms offer a method to test whether attentional demands selectively disrupt temporal precision. This study [...] Read more.
Objectives: Sub-second motor timing is critical for skilled performance in domains such as sport, music, and safety-critical multitasking; however, its robustness under cognitive load remains unresolved. Dual-task paradigms offer a method to test whether attentional demands selectively disrupt temporal precision. This study intended to investigate the effects of cognitive load on rhythmic finger tapping at a sub-second interval. Methods: A sample of 103 college students (19–25 years) performed a synchronization–continuation tapping task at 500 ms intervals under single- and dual-task conditions across five trials. The dual-task condition included a distracting letter-span task imposing working memory load. Inter-response intervals (IRIs), their variability (IRI SD), and accuracy (AI) were analyzed using linear mixed-effects models. Results: Tapping intervals were consistently shorter than the 500 ms target by approximately 70 ms in both conditions, showing anticipatory mechanisms that remained stable under cognitive load. Mean accuracy did not vary between single- and dual-task conditions. By contrast, temporal variability was significantly higher in the dual-task condition, reflecting diminished trial-to-trial consistency. These effects continued throughout trials and were supported by model estimates, which indicated robust between-subject variability but selective disruption of consistency rather than mean performance. Conclusions: Dual-tasking selectively hinders temporal stability in sub-second motor timing while ensuring that the reproduction and accuracy of the mean interval remain unchanged. This pattern supports dual-process accounts of timing, suggesting distinct roles for predictive control and attentional allocation. The results have applied relevance for situations requiring precise rhythmic performance under cognitive load, including sports, ensemble music, and safety-critical tasks. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

15 pages, 447 KB  
Article
Effects of a 12-Week Exercise Intervention on Primitive Reflex Retention and Social Development in Children with ASD and ADHD
by Norikazu Hirose, Yuki Tashiro and Tomoya Takasaki
Children 2025, 12(8), 987; https://doi.org/10.3390/children12080987 - 28 Jul 2025
Viewed by 3619
Abstract
Objective: Retained primitive reflexes are associated with delayed motor and behavioral development in children with autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). This study examined the effects of a 12-week structured exercise intervention on reflex integration, motor coordination, and socio-behavioral outcomes in [...] Read more.
Objective: Retained primitive reflexes are associated with delayed motor and behavioral development in children with autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). This study examined the effects of a 12-week structured exercise intervention on reflex integration, motor coordination, and socio-behavioral outcomes in these populations. Method: Fifteen children with ASD (13 boys, 2 girls) and twelve with ADHD (8 boys, 4 girls), aged 6–12 years, participated in rhythmic, balance, and coordination-based exercises. Primitive reflexes, including the asymmetrical tonic neck reflex (ATNR), were assessed using standardized protocols, and fine motor coordination was evaluated using the Finger and Thumb Opposition Test (FOT). Behavioral outcomes were measured using the Social Responsiveness Scale-2 (SRS-2) for the ASD group and the Conners 3 for the ADHD group. Results: The ASD group showed significant reductions in left-standing ATNR retention scores (p = 0.012) and improvements in right-hand FOT scores (p = 0.023). In the ADHD group, significant improvements were also observed in right-hand FOT scores (p = 0.007). Furthermore, Conners 3 Total and Global Index scores significantly decreased in the ADHD group (p = 0.016 and 0.020, respectively). Reflex retention patterns appeared broader and more bilateral in ASD than in ADHD, suggesting distinct motor developmental profiles. Conclusions: Short-term rhythmic, balance, and whole-body coordination exercise interventions may support behavioral and motor development in children with ASD and ADHD. Tailored programs emphasizing reflex integration hold promise for clinical and educational applications. Full article
(This article belongs to the Special Issue Effects of Exercise Interventions on Children)
Show Figures

Graphical abstract

24 pages, 377 KB  
Review
The Effects of Music-Based Patterned Sensory Enhancement on Motor Function: A Scoping Review
by Chantelle C. Caputo, Marija Pranjić, Yuko Koshimori and Michael H. Thaut
Brain Sci. 2025, 15(7), 664; https://doi.org/10.3390/brainsci15070664 - 20 Jun 2025
Viewed by 1300
Abstract
Background/Objectives: Patterned Sensory Enhancement (PSE), a Neurologic Music Therapy technique, utilizes rhythm and other musical elements to facilitate functional movement in diverse clinical populations. This scoping review is the first to systematically synthesize the current evidence surrounding PSE’s use and its effects on [...] Read more.
Background/Objectives: Patterned Sensory Enhancement (PSE), a Neurologic Music Therapy technique, utilizes rhythm and other musical elements to facilitate functional movement in diverse clinical populations. This scoping review is the first to systematically synthesize the current evidence surrounding PSE’s use and its effects on motor function across various populations in order to evaluate its therapeutic potential, identify gaps in the existing literature, and guide future research efforts. Methods: A literature search was conducted across five major databases (MEDLINE, Embase, PsycINFO, CINAHL, and Scopus) in accordance with the PRISMA-ScR guidelines. Results: From 1018 screened articles, 15 met the inclusion criteria. PSE has been demonstrated as effective across clinical populations, including Cerebral Palsy, stroke, Parkinson’s Disease, and psychiatric conditions. However, the results for studies on geriatric populations remain inconsistent. Despite the variability in the outcome measures and movement types assessed, PSE is consistently supported as an effective approach for enhancing motor function. However, to date, only a small number of studies across populations have been conducted. Conclusions: This scoping review suggests that PSE holds significant potential for improving motor function across a range of clinical populations. Further research is needed to explore the long-term effects, use standardized terminology, and identify the optimal implementation strategies tailored to the unique needs of different populations to maximize its therapeutic benefit. Full article
(This article belongs to the Special Issue Focusing on the Rhythmic Interventions in Movement Disorders)
Show Figures

Figure 1

13 pages, 1559 KB  
Article
Differential Effects of Low-Frequency TMS of the Motor Cortex on Voluntary and Non-Voluntary Rhythmic Arm Movements
by Irina A. Solopova, Victor A. Selionov, Irina Y. Dolinskaya, Germana Cappellini and Yury Ivanenko
Appl. Sci. 2025, 15(12), 6413; https://doi.org/10.3390/app15126413 - 6 Jun 2025
Viewed by 530
Abstract
Given the cervical spinal cord’s role in locomotor and rhythmic upper limb tasks, its neuromodulation has emerged as an important area of study for understanding human spinal rhythmogenesis. We previously demonstrated that, under unloading conditions, arm muscle vibrostimulation can elicit non-voluntary upper limb [...] Read more.
Given the cervical spinal cord’s role in locomotor and rhythmic upper limb tasks, its neuromodulation has emerged as an important area of study for understanding human spinal rhythmogenesis. We previously demonstrated that, under unloading conditions, arm muscle vibrostimulation can elicit non-voluntary upper limb oscillations. In this study, we investigated the effects of transcranial magnetic stimulation (TMS) of the motor cortex during both voluntary and non-voluntary (vibration-induced) rhythmic arm movements. We analyzed motor-evoked potentials, mean arm muscle activity, and kinematic parameters of arm movements, including cycle duration and shoulder and elbow joint angular oscillations. Motor-evoked potentials in proximal arm muscles were significantly modulated during both movement types. Notably, low-frequency TMS markedly enhanced non-voluntary arm oscillations, whereas its effect on voluntary movements was statistically non-significant. This differential response is likely due to the absence of characteristic supraspinal influences in sensory-induced spinal activation during non-voluntary movements. These findings align with previous evidence showing that supraspinal pathways facilitate rhythmogenesis in the lower limbs, and they now extend this concept to the upper limbs. Overall, our results suggest that therapies aimed at modulating cervical central pattern generators may benefit from the active engagement of supraspinal motor circuits. Full article
Show Figures

Figure 1

27 pages, 3520 KB  
Study Protocol
Epidural Stimulation and Resistance Training (REST-SCI) for Overground Locomotion After Spinal Cord Injury: Randomized Clinical Trial Protocol
by Ashraf S. Gorgey, Robert Trainer, Refka E. Khalil, Jakob Deitrich, Muhammad Uzair Rehman, Lance L. Goetz, Denise Lester, Adam Klausner, Carrie L. Peterson and Timothy Lavis
J. Clin. Med. 2025, 14(6), 1829; https://doi.org/10.3390/jcm14061829 - 8 Mar 2025
Cited by 1 | Viewed by 4684
Abstract
Introduction: Implanted spinal cord epidural stimulation (SCES) is an emerging neuromodulation approach that increases the excitability of the central pattern generator [CPG] and enhances tonic and rhythmic motor patterns after spinal cord injury (SCI). We determine the effects of exoskeleton-assisted walking [EAW] + [...] Read more.
Introduction: Implanted spinal cord epidural stimulation (SCES) is an emerging neuromodulation approach that increases the excitability of the central pattern generator [CPG] and enhances tonic and rhythmic motor patterns after spinal cord injury (SCI). We determine the effects of exoskeleton-assisted walking [EAW] + epidural stimulation [ES] + resistance training [RT] on volitional motor control as a primary outcome, as well as autonomic cardiovascular profile, body composition, and bladder function compared to EAW + delayed ES + noRT in persons with motor-complete SCI AIS A and B. Methods and Analysis: Twenty male and female participants [age 18–60 years] with traumatic motor-complete SCI [2 years or more post injury], and level of injury below C5 were randomized into either EAW + ES + RT or EAW + delayed-ES + no-RT groups for more than 12 months. Baseline, post-interventions 1 and 2 were conducted six months apart. Measurements included body composition assessment using anthropometry, dual x-ray absorptiometry, and magnetic resonance imaging prior to implantation to evaluate the extent of spinal cord damage, neurophysiologic assessments to record H-reflexes, overground ambulation and peak torque for both groups, and the Walking Index for Spinal Cord Injury Scale [WISCI 2]. Metabolic profile measurements included the resting metabolic rate, fasting biomarkers of HbA1c, lipid panels, total testosterone CRP, IL-6, TNF-α, plasma IGF-I, IGFBP-3, and then a glucose tolerance test. Finally, urodynamic testing was conducted to assess functional bladder improvement due to ES. Results: The restoration of locomotion with ES and EAW may result in a reduction in psychosocial, cardiovascular, and metabolic bladder parameters and socioeconomic burden. The addition of the resistance training paradigm may further augment the outcomes of ES on motor function in persons with SCI. Conclusions: Percutaneous SCES appears to be a feasible and safe rehabilitation approach for the restoration of motor function in persons with SCI. The procedure may be successfully implemented with other task-specific training similar to EAW and resistance training. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

12 pages, 742 KB  
Article
Middle and Long Latency Cutaneous Reflexes During the Stance Phase of Gait in Individuals with and Without Chronic Ankle Instability
by Leif P. Madsen, Annalee M. H. Friedman, Carrie L. Docherty, Koichi Kitano and David M. Koceja
Brain Sci. 2024, 14(12), 1225; https://doi.org/10.3390/brainsci14121225 - 3 Dec 2024
Viewed by 1428
Abstract
Background/objectives: Lower limb cutaneous reflex amplitudes can modulate across gait, which helps humans adjust rhythmic motor outputs to maintain balance in an ever-changing environment. Preliminary evidence suggests people who suffer from repetitive ankle sprains and residual feelings of giving way demonstrate altered cutaneous [...] Read more.
Background/objectives: Lower limb cutaneous reflex amplitudes can modulate across gait, which helps humans adjust rhythmic motor outputs to maintain balance in an ever-changing environment. Preliminary evidence suggests people who suffer from repetitive ankle sprains and residual feelings of giving way demonstrate altered cutaneous reflex patterns in the gastrocnemius. However, before cutaneous reflex assessment can be implemented as a clinical outcome measure, there is a need to substantiate these early findings by measuring reflex amplitudes across longer latency periods and exploring the variability of reflexes within each subject. Methods: Forty-eight subjects with and without chronic ankle instability (CAI) walked on a treadmill at 4 km/h while activity of the lateral gastrocnemius (LG) was measured via surface electromyography. Non-noxious stimulations were elicited randomly to the ipsilateral sural nerve at the mid-stance phase of gait, and reflex amplitudes were calculated offline by comparing muscle activity during unstimulated and stimulated gait cycles. Two primary outcome measures were compared between groups at the middle latency (MLR: 80–120 ms) and late latency (LLR: 120–150 ms) time windows: (1) average reflex amplitudes and (2) standard deviation of reflex amplitudes for each subject across 10 trials. Results: Both groups demonstrated an equal amount of LG inhibition at the MLR and LG facilitation at the LLR. However, subjects with CAI showed significantly higher variability in LLR amplitude across trials than healthy controls. Conclusions: Increased variability of cutaneous reflex amplitudes may relate to symptoms associated with CAI. These findings suggest that reflex variability following sural nerve stimulation could serve as an objective measure to track treatment progress in patients with CAI, offering clinicians a new tool for conducting rehabilitation assessments in a controlled environment. Full article
Show Figures

Figure 1

22 pages, 1401 KB  
Review
From Sound to Movement: Mapping the Neural Mechanisms of Auditory–Motor Entrainment and Synchronization
by Marija Pranjić, Thenille Braun Janzen, Nikolina Vukšić and Michael Thaut
Brain Sci. 2024, 14(11), 1063; https://doi.org/10.3390/brainsci14111063 - 25 Oct 2024
Cited by 10 | Viewed by 5338
Abstract
Background: Humans exhibit a remarkable ability to synchronize their actions with external auditory stimuli through a process called auditory–motor or rhythmic entrainment. Positive effects of rhythmic entrainment have been demonstrated in adults with neurological movement disorders, yet the neural substrates supporting the transformation [...] Read more.
Background: Humans exhibit a remarkable ability to synchronize their actions with external auditory stimuli through a process called auditory–motor or rhythmic entrainment. Positive effects of rhythmic entrainment have been demonstrated in adults with neurological movement disorders, yet the neural substrates supporting the transformation of auditory input into timed rhythmic motor outputs are not fully understood. We aimed to systematically map and synthesize the research on the neural correlates of auditory–motor entrainment and synchronization. Methods: Following the PRISMA-ScR guidelines for scoping reviews, a systematic search was conducted across four databases (MEDLINE, Embase, PsycInfo, and Scopus) for articles published between 2013 and 2023. Results: From an initial return of 1430 records, 22 studies met the inclusion criteria and were synthesized based on the neuroimaging modality. There is converging evidence that auditory–motor synchronization engages bilateral cortical and subcortical networks, including the supplementary motor area, premotor cortex, ventrolateral prefrontal cortex, basal ganglia, and cerebellum. Specifically, the supplementary motor area and the basal ganglia are essential for beat-based timing and internally guided rhythmic movements, while the cerebellum plays an important role in tracking and processing complex rhythmic patterns and synchronizing to the external beat. Self-paced tapping is associated with additional activations in the prefrontal cortex and the basal ganglia, suggesting that tapping in the absence of auditory cues requires more neural resources. Lastly, existing studies indicate that movement rate and the type of music further modulate the EEG power in the alpha and beta frequency bands. Conclusions: These findings are discussed in the context of clinical implications and rhythm-based therapies. Full article
(This article belongs to the Special Issue Focusing on the Rhythmic Interventions in Movement Disorders)
Show Figures

Figure 1

20 pages, 4796 KB  
Article
Neuromuscular Anatomy and Motor Patterns at the Base of Calling Behaviour in the Female Spongy Moth Lymantria dispar
by Paolo Solari, Giorgia Sollai and Roberto Crnjar
Insects 2024, 15(3), 169; https://doi.org/10.3390/insects15030169 - 1 Mar 2024
Cited by 1 | Viewed by 1664
Abstract
“Calling behaviour” is a stereotyped rhythmic motor pattern displayed by female moths, by which they emit the sex pheromone to attract of conspecific males. Calling occurs through a squeezing mechanism based on the turtleneck-like folding and unfolding of the ovipositor cuticle during its [...] Read more.
“Calling behaviour” is a stereotyped rhythmic motor pattern displayed by female moths, by which they emit the sex pheromone to attract of conspecific males. Calling occurs through a squeezing mechanism based on the turtleneck-like folding and unfolding of the ovipositor cuticle during its telescopic extensions and retractions. This mechanism is under the control of the terminal abdominal ganglion (TAG). By combining anatomical and electrophysiological approaches, here we studied the morpho-functional organisation of the abdominal muscles and the activity of motoneurons from TAG nerve N4-N6 as correlated to the ovipositor movements during calling in the female spongy moth Lymantria dispar. Our results show that the three abdominal segments S7, S8 and S9 (ovipositor) are highly specialized structures containing cuticular appendages, hinges, apodemes and several large muscles, innervated by N4 and especially by N5. N6 mainly innervates the oviductal tract. We also identified a number of motor units from N4 and N5, the spike activity of which is correlated with the ovipositor movements during calling. In conclusion, the release of sex pheromones in the female spongy moth is obtained by extensions and retractions of the ovipositor operated by a coordinated motor program, which is mainly sustained by the activity of a few motor units under the control of TAG nerves N4 and N5. Full article
(This article belongs to the Topic Arthropod Biodiversity: Ecological and Functional Aspects)
Show Figures

Figure 1

17 pages, 5054 KB  
Article
Functional and Transcriptomic Characterization of Postnatal Maturation of ENS and SIP Syncytium in Mice Colon
by Zhihao Wu, Qianqian Wang, Fan Yang, Jiaxuan Wang, Yuying Zhao, Brian A. Perrino and Jie Chen
Biomolecules 2023, 13(12), 1688; https://doi.org/10.3390/biom13121688 - 23 Nov 2023
Cited by 3 | Viewed by 2001
Abstract
The interplay of the enteric nervous system (ENS) and SIP syncytium (smooth muscle cells–interstitial cells of Cajal–PDGFRα+ cells) plays an important role in the regulation of gastrointestinal (GI) motility. This study aimed to investigate the dynamic regulatory mechanisms of the ENS-SIP system on [...] Read more.
The interplay of the enteric nervous system (ENS) and SIP syncytium (smooth muscle cells–interstitial cells of Cajal–PDGFRα+ cells) plays an important role in the regulation of gastrointestinal (GI) motility. This study aimed to investigate the dynamic regulatory mechanisms of the ENS-SIP system on colon motility during postnatal development. Colonic samples of postnatal 1-week-old (PW1), 3-week-old (PW3), and 5-week-old (PW5) mice were characterized by RNA sequencing, qPCR, Western blotting, isometric force recordings (IFR), and colonic motor complex (CMC) force measurements. Our study showed that the transcriptional expression of Pdgfrα, c-Kit, P2ry1, Nos1, and Slc18a3, and the protein expression of nNOS, c-Kit, and ANO1 significantly increased with age from PW1 to PW5. In PW1 and PW3 mice, colonic migrating movement was not fully developed. In PW5 mice, rhythmic CMCs were recorded, similar to the CMC pattern described previously in adult mice. The inhibition of nNOS revealed excitatory and non-propulsive responses which are normally suppressed due to ongoing nitrergic inhibition. During postnatal development, molecular data demonstrated the establishment and expansion of ICC and PDGFRα+ cells, along with nitrergic and cholinergic nerves and purinergic receptors. Our findings are important for understanding the role of the SIP syncytium in generating and establishing CMCs in postnatal, developing murine colons. Full article
(This article belongs to the Special Issue Pathogenesis and Potential Treatments of Neurointestinal Diseases)
Show Figures

Graphical abstract

13 pages, 4895 KB  
Article
Synchronous Muscle Synergy Evaluation of Jaw Muscle Activities during Chewing at Different Speeds, a Preliminary Study
by Marzieh Allami Sanjani, Ehsan Tahami and Gelareh Veisi
Brain Sci. 2023, 13(9), 1344; https://doi.org/10.3390/brainsci13091344 - 19 Sep 2023
Cited by 3 | Viewed by 2678
Abstract
Human mastication is a complex and rhythmic biomechanical process regulated by the central nervous system (CNS). Muscle synergies are a group of motor primitives that the CNS may combine to simplify motor control in human movement. This study aimed to apply the non-negative [...] Read more.
Human mastication is a complex and rhythmic biomechanical process regulated by the central nervous system (CNS). Muscle synergies are a group of motor primitives that the CNS may combine to simplify motor control in human movement. This study aimed to apply the non-negative matrix factorization approach to examine the coordination of the masticatory muscles on both sides during chewing. Ten healthy individuals were asked to chew gum at different speeds while their muscle activity was measured using surface electromyography of the right and left masseter and temporalis muscles. Regardless of the chewing speed, two main muscle synergies explained most of the muscle activity variation, accounting for over 98% of the changes in muscle patterns (variance accounted for >98%). The first synergy contained the chewing side masseter muscle information, and the second synergy provided information on bilateral temporalis muscles during the jaw closing. Furthermore, there was robust consistency and high degrees of similarity among the sets of muscle synergy information across different rate conditions and participants. These novel findings in healthy participants supported the hypothesis that all participants in various chewing speed conditions apply the same motor control strategies for chewing. Furthermore, these outcomes can be utilized to design rehabilitation approaches such as biofeedback therapy for mastication disorders. Full article
(This article belongs to the Section Craniofacial and Oral Neurosciences)
Show Figures

Graphical abstract

18 pages, 1518 KB  
Article
Classification of Motor Imagery Using Trial Extension in Spatial Domain with Rhythmic Components of EEG
by Md. Khademul Islam Molla, Sakir Ahamed, Ahmed M. M. Almassri and Hiroaki Wagatsuma
Mathematics 2023, 11(17), 3801; https://doi.org/10.3390/math11173801 - 4 Sep 2023
Cited by 2 | Viewed by 3286
Abstract
Electrical activities of the human brain can be recorded with electroencephalography (EEG). To characterize motor imagery (MI) tasks for brain–computer interface (BCI) implementation is an easy and cost-effective tool. The MI task is represented by a short-time trial of multichannel EEG. In this [...] Read more.
Electrical activities of the human brain can be recorded with electroencephalography (EEG). To characterize motor imagery (MI) tasks for brain–computer interface (BCI) implementation is an easy and cost-effective tool. The MI task is represented by a short-time trial of multichannel EEG. In this paper, the signal of each channel of raw EEG is decomposed into a finite set of narrowband signals using a Fourier-transformation-based bandpass filter. Rhythmic components of EEG are represented by each of the narrowband signals that characterize the brain activities related to MI tasks. The subband signals are arranged to extend the dimension of the EEG trial in the spatial domain. The spatial features are extracted from the set of extended trials using a common spatial pattern (CSP). An optimum number of features are employed to classify the motor imagery tasks using an artificial neural network. An integrated approach with full-band and narrowband signals is implemented to derive discriminative features for MI classification. In addition, the subject-dependent parameter optimization scheme enhances the performance of the proposed method. The performance evaluation of the proposed method is obtained using two publicly available benchmark datasets (Dataset I and Dataset II). The experimental results in terms of classification accuracy (93.88% with Dataset I and 91.55% with Dataset II) show that it performs better than the recently developed algorithms. The enhanced MI classification accuracy is very much applicable in BCI implementation. Full article
(This article belongs to the Special Issue Machine Learning in Bioinformatics and Biostatistics)
Show Figures

Figure 1

13 pages, 2442 KB  
Article
Mapping Research Trends from 20 Years of Publications in Rhythmic Auditory Stimulation
by Meiqi Zhang, Fang Li, Dongyu Wang, Xiaohong Ba and Zhan Liu
Int. J. Environ. Res. Public Health 2023, 20(1), 215; https://doi.org/10.3390/ijerph20010215 - 23 Dec 2022
Cited by 4 | Viewed by 2622
Abstract
This study aims to create an all-around insight into the evolutions, status, and global trends of rhythmic auditory stimulation (RAS) research via enhanced bibliometric methods for the 2001–2020 time period. Articles concerning RAS were extracted from the Web of Science database. CiteSpace, Bibliometrix, [...] Read more.
This study aims to create an all-around insight into the evolutions, status, and global trends of rhythmic auditory stimulation (RAS) research via enhanced bibliometric methods for the 2001–2020 time period. Articles concerning RAS were extracted from the Web of Science database. CiteSpace, Bibliometrix, VOSviewer, and Graphpad Prism were employed to analyze publication patterns and research trends. A total of 586 publications related to RAS between 2001 and 2020 were retrieved from the Web of Science database. The researcher Goswami U. made the greatest contribution to this field. The University of Toronto was the institution that published the most articles. Motor dysfunction, sensory perception, and cognition are the three major domains of RAS research. Neural tracking, working memory, and neural basis may be the latest research frontiers. This study reveals the publication patterns and topic trends of RAS based on the records published between 2001 and 2020. The insights obtained provided useful references for the future research and applications of RAS. Full article
(This article belongs to the Special Issue Health Services and Assistive Technology in Rehabilitation)
Show Figures

Figure 1

20 pages, 9511 KB  
Article
Sex-Dependent Effects of Piromelatine Treatment on Sleep-Wake Cycle and Sleep Structure of Prenatally Stressed Rats
by Jana Tchekalarova, Lidia Kortenska, Pencho Marinov and Natasha Ivanova
Int. J. Mol. Sci. 2022, 23(18), 10349; https://doi.org/10.3390/ijms231810349 - 8 Sep 2022
Cited by 4 | Viewed by 2488
Abstract
Prenatal stress (PNS) impairs the circadian rhythm of the sleep/wake cycle. The melatonin (MT) analogue Piromelatine (Pir) was designed for the treatment of insomnia. The present study aimed to explore effects of Pir on circadian rhythmicity, motor activity, and sleep structure in male [...] Read more.
Prenatal stress (PNS) impairs the circadian rhythm of the sleep/wake cycle. The melatonin (MT) analogue Piromelatine (Pir) was designed for the treatment of insomnia. The present study aimed to explore effects of Pir on circadian rhythmicity, motor activity, and sleep structure in male and female rats with a history of prenatal stress (PNS). In addition, we elucidated the role of MT receptors and brain-derived neurotrophic factor (BDNF) to ascertain the underlying mechanism of the drug. Pregnant rats were exposed to different stressors from day seven until birth. Piromelatine (20 mg/kg/day/14 days) was administered to young adult offspring. Home-cage locomotion, electroencephalographic (EEG) and electromyographic (EMG) recordings were conducted for 24 h. Offspring treated with vehicle showed sex-and phase-dependent disturbed circadian rhythm of motor activity and sleep/wake cycle accompanied by elevated rapid eye movement (REM) pattern and theta power and diminished non-rapid eye movement (NREM) sleep and delta power. While Pir corrected the PNS-induced impaired sleep patterns, the MT receptor antagonist luzindol suppressed its effects in male and female offspring. In addition, Pir increased the BDNF expression in the hippocampus in male and female offspring with PNS. Our findings suggest that the beneficial effect of Pir on PNS-induced impairment of sleep/wake cycle circadian rhythm and sleep structure is exerted via activation of MT receptors and enhanced BDNF expression in the hippocampus in male and female offspring. Full article
Show Figures

Figure 1

16 pages, 1006 KB  
Article
Performance Index for in Home Assessment of Motion Abilities in Ataxia Telangiectasia: A Pilot Study
by M. El Arayshi, C. M. Verrelli, G. Saggio, M. Iosa, A. E. Gentile, L. Chessa, M. Ruggieri and A. Polizzi
Appl. Sci. 2022, 12(8), 4093; https://doi.org/10.3390/app12084093 - 18 Apr 2022
Cited by 4 | Viewed by 2703
Abstract
Background. It has been shown in the very recent literature that human walking generates rhythmic motor patterns with hidden time harmonic structures that are represented (at the subject’s comfortable speed) by the occurrence of the golden ratio as the the ratio of [...] Read more.
Background. It has been shown in the very recent literature that human walking generates rhythmic motor patterns with hidden time harmonic structures that are represented (at the subject’s comfortable speed) by the occurrence of the golden ratio as the the ratio of the durations of specific walking gait subphases. Such harmonic proportions may be affected—partially or even totally destroyed—by several neurological and/or systemic disorders, thus drastically reducing the smooth, graceful, and melodic flow of movements and altering gait self-similarities. Aim. In this paper we aim at, preliminarily, showing the reliability of a technologically assisted methodology—performed with an easy to use wearable motion capture system—for the evaluation of motion abilities in Ataxia-Telangiectasia (AT), a rare infantile onset neurodegenerative disorder, whose typical neurological manifestations include progressive gait unbalance and the disturbance of motor coordination. Methods. Such an experimental methodology relies, for the first time, on the most recent accurate and objective outcome measures of gait recursivity and harmonicity and symmetry and double support subphase consistency, applied to three AT patients with different ranges of AT severity. Results. The quantification of the level of the distortions of harmonic temporal proportions is shown to include the qualitative evaluations of the three AT patients provided by clinicians. Conclusions. Easy to use wearable motion capture systems might be used to evaluate AT motion abilities through recursivity and harmonicity and symmetry (quantitative) outcome measures. Full article
(This article belongs to the Special Issue Performance Analysis in Sport and Exercise)
Show Figures

Figure 1

13 pages, 1439 KB  
Article
Changes in the Complexity of Limb Movements during the First Year of Life across Different Tasks
by Zuzanna Laudańska, David López Pérez, Alicja Radkowska, Karolina Babis, Anna Malinowska-Korczak, Sebastian Wallot and Przemysław Tomalski
Entropy 2022, 24(4), 552; https://doi.org/10.3390/e24040552 - 15 Apr 2022
Cited by 12 | Viewed by 3626
Abstract
Infants’ limb movements evolve from disorganized to more selectively coordinated during the first year of life as they learn to navigate and interact with an ever-changing environment more efficiently. However, how these coordination patterns change during the first year of life and across [...] Read more.
Infants’ limb movements evolve from disorganized to more selectively coordinated during the first year of life as they learn to navigate and interact with an ever-changing environment more efficiently. However, how these coordination patterns change during the first year of life and across different contexts is unknown. Here, we used wearable motion trackers to study the developmental changes in the complexity of limb movements (arms and legs) at 4, 6, 9 and 12 months of age in two different tasks: rhythmic rattle-shaking and free play. We applied Multidimensional Recurrence Quantification Analysis (MdRQA) to capture the nonlinear changes in infants’ limb complexity. We show that the MdRQA parameters (entropy, recurrence rate and mean line) are task-dependent only at 9 and 12 months of age, with higher values in rattle-shaking than free play. Since rattle-shaking elicits more stable and repetitive limb movements than the free exploration of multiple objects, we interpret our data as reflecting an increase in infants’ motor control that allows for stable body positioning and easier execution of limb movements. Infants’ motor system becomes more stable and flexible with age, allowing for flexible adaptation of behaviors to task demands. Full article
Show Figures

Figure 1

Back to TopTop