Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = reef reservoir

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 12183 KiB  
Article
A Study on the Sedimentary Environment and Facies Model of Triassic Carbonate Rocks in the Mangeshlak Basin
by Fanyang Meng, Kaixun Zhang, Zhiping He, Miao Miao and Feng Wang
Appl. Sci. 2025, 15(14), 7788; https://doi.org/10.3390/app15147788 - 11 Jul 2025
Viewed by 268
Abstract
Based on drilling, core and seismic data, combined with the regional tectonic sedimentary evolution background, the sedimentary environment of the Triassic carbonate rocks in the Mangeshlak Basin was studied. A sedimentary facies model of this set of carbonate rocks was established. Research has [...] Read more.
Based on drilling, core and seismic data, combined with the regional tectonic sedimentary evolution background, the sedimentary environment of the Triassic carbonate rocks in the Mangeshlak Basin was studied. A sedimentary facies model of this set of carbonate rocks was established. Research has shown that the Mangeshlak Basin underwent a complete large-scale marine transgression–regression sedimentary evolution process during the Triassic. During the early to middle Triassic, seawater gradually invaded the northwest region of the basin from northwest to southeast and gradually regressed in the late Middle Triassic. In the lower part of the Triassic carbonate rocks, the primary components are developed granular limestone or dolomite with oolitic structures, interspersed with a small amount of thin mudstone, which is a good reservoir; the upper part of the Triassic is mainly composed of sedimentary mudstone and mudstone, which can form good sealings. The hill-shaped reflections of the platform edge facies, along with the high-frequency, strong-amplitude, and moderately continuous reflections within the restricted platform interior, are clearly visible on the seismic profile. These features are consistent with the sedimentary environment and lithofacies characteristics revealed by drilling data along the profile. Drilling and seismic data revealed that the sedimentary environment of the early and middle Triassic in the basin is mainly composed of shallow water platform edges and restricted platforms, as well as carbonate rock slopes and open non-marine shelves in deep water areas. A sedimentary facies model of the Triassic carbonate rock segment in the basin was established, comprising restricted platforms, platform edges, carbonate rock slopes, and non-marine shelves. Unlike the modified Wilson marginal carbonate rock platform model, the carbonate rock platform edge in the Mangeshlak Basin does not develop reef facies. Instead, it is mainly composed of oolitic beach (dam) sediments, making it the most favorable sedimentary facies zone for the Triassic reservoir development in the basin. Full article
Show Figures

Figure 1

23 pages, 33244 KiB  
Article
The Sedimentary Distribution and Evolution of Middle Jurassic Reefs and Carbonate Platform on the Middle Low Uplift in the Chaoshan Depression, Northern South China Sea
by Ming Sun, Hai Yi, Zhongquan Zhao, Changmao Feng, Guangjian Zhong and Guanghong Tu
J. Mar. Sci. Eng. 2025, 13(6), 1025; https://doi.org/10.3390/jmse13061025 - 23 May 2025
Viewed by 510
Abstract
The Chaoshan Depression, situated in the northern South China Sea, is a Mesozoic residual depression beneath the Cenozoic Pearl River Mouth Basin. Borehole LF35-1-1 has confirmed the existence of marine Jurassic layers rich in organic carbon within this depression. However, the understanding of [...] Read more.
The Chaoshan Depression, situated in the northern South China Sea, is a Mesozoic residual depression beneath the Cenozoic Pearl River Mouth Basin. Borehole LF35-1-1 has confirmed the existence of marine Jurassic layers rich in organic carbon within this depression. However, the understanding of petroleum geology in this area is limited due to the complex interplay of Mesozoic and Cenozoic tectonic activities and the poor quality of seismic imaging from previous surveys, which have obstructed insights into the characteristics of Mesozoic reservoirs and the processes of oil and gas accumulation. Recent quasi-3D seismic data have allowed for the identification of Mesozoic bioherms and carbonate platforms in the Middle Low Uplift of the Chaoshan Depression. This research employs integrated geophysical data (MCS, gravity, magnetic) and well data to explore the factors that influenced Middle Jurassic reef development and their implications for reservoir formation. The seismic reflection patterns of reefs and carbonate platforms are primarily characterized by high-amplitude discontinuous to chaotic reflections, with occasional blank reflections or weak, sub-parallel reflections, as well as significant high-velocity, high Bouguer gravity and low reduced-to-pole (RTP) magnetic anomalies. Atolls, stratiform reefs, and patch reefs are located on the local topographic highs of the platform. Three vertical evolutionary stages have been identified based on the size of atolls and fluctuations in relative sea level: initiation, growth, and submergence. The location of bioherms and carbonate platforms was influenced by paleotectonic topography, while their horizontal distribution was affected by variations in relative sea level. Furthermore, the reef limestone reservoirs from the upper member of the Middle Jurassic, combined with the mudstone source rocks from the Lower Jurassic and the lower section of the Middle Jurassic, as well as the bathyal mudstone caprocks from the lower part of the Late Jurassic, create highly favorable conditions for hydrocarbon accumulation. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

17 pages, 16920 KiB  
Article
Lower Cretaceous Carbonate Sequences in the Northwestern Persian Gulf Basin: A Response to the Combined Effects of Tectonic Activity and Global Sea-Level Changes
by Yaning Wang, Qinqin Cong, Xuan Chen, Wei Huang, Rui Han and Gaoyang Gong
Minerals 2025, 15(4), 363; https://doi.org/10.3390/min15040363 - 31 Mar 2025
Cited by 1 | Viewed by 480
Abstract
In the northern Persian Gulf Basin, a carbonate succession developed during the Berriasian–Valanginian of the Early Cretaceous, constituting an important reservoir in the Middle East. The genetic types of this succession are highly variable and controlled by sequence evolution. However, the sequence construction [...] Read more.
In the northern Persian Gulf Basin, a carbonate succession developed during the Berriasian–Valanginian of the Early Cretaceous, constituting an important reservoir in the Middle East. The genetic types of this succession are highly variable and controlled by sequence evolution. However, the sequence construction processes and sedimentary model evolution remain poorly understood. To analyze sedimentary models and sequence-controlling factors, this study examines sequence stratigraphic characteristics. The analysis is based on core thin sections, well logs, seismic data, and global sea-level records. The results indicate that: (1) During the Berriasian to Valanginian, one retrogradational sequence (SQ1) and three progradational sequences (SQ2–SQ4) were identified, arranged from bottom to top. The three sequences (SQ2 to SQ4) exhibit a vertically stacked progradational pattern towards the northeast. (2) SQ1 is dominated by shelf facies, while SQ2 to SQ4 are characterized by platform facies. Within each sequence (SQ2 to SQ4), the depositional environments transition from basin to slope, platform margin, and finally restricted platform facies. Specifically, during the SQ2 period, the platform margin had a low dip angle (<1.0°), indicating a gently sloping platform. In contrast, during the SQ3 to SQ4 sequences, the platform margin exhibited a steeper dip angle (1.2–1.5°), suggesting a rimmed platform. (3) SQ1 is governed by the global marine transgression during the Early Cretaceous, representing a global sea-level sequence. SQ2 to SQ4 are influenced by the combined effects of tectonic activities and sea-level changes, constituting tectonic/global sea-level change sequences. The transgressive sequences have developed high-quality source rocks, while the regressive sequences have formed extensive reservoirs, together creating favorable hydrocarbon source–reservoir assemblages. The reef and shoal distribution model developed in this study offers valuable insights for reservoir prediction. Additionally, the interpreted transgressive sequences may have global correlation potential. Full article
Show Figures

Figure 1

21 pages, 6007 KiB  
Article
Impact of Network Configuration on Hydraulic Constraints and Cost in the Optimization of Water Distribution Networks
by Mojtaba Nedaei
Appl. Sci. 2025, 15(6), 3126; https://doi.org/10.3390/app15063126 - 13 Mar 2025
Viewed by 748
Abstract
This study introduces a novel approach for the multi-model analysis of complex water distribution networks (WDNs). The research focuses on designing and optimizing various WDN configurations while adhering to hydraulic constraints. Several key parameters and criteria are considered to achieve an efficient design. [...] Read more.
This study introduces a novel approach for the multi-model analysis of complex water distribution networks (WDNs). The research focuses on designing and optimizing various WDN configurations while adhering to hydraulic constraints. Several key parameters and criteria are considered to achieve an efficient design. Additionally, different network layouts are evaluated, including looped and non-looped systems with varying numbers of reservoirs. Next, an analytical approach is developed to optimize the proposed WDNs, taking into account pipe type, length, and diameter, as well as nodal demands, elevations, pressure losses, and water velocities. Cost analysis reveals that a single-reservoir, non-looped WDN has the lowest cost (USD 26,892), while a two-reservoir, looped WDN has the highest (USD 30,861). The design inflows vary linearly, ranging from 0.0212 to 0.205 m3/s for a 0.3 m pipe diameter and from 0.0589 to 0.5694 m3/s for a 0.5 m pipe diameter. Further, a new approach based on the Coral Reef Algorithm (CRA) is developed and implemented to improve the technical and economic viability of the designed WDNs. The CRA effectively showcases its capacity to iteratively enhance network design by reducing overall costs significantly. Notably, higher demand multipliers yield even more efficient solutions, suggesting the algorithm’s adaptability to varying demand scenarios. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

19 pages, 38097 KiB  
Article
Sediment Provenance and Facies Analysis of the Huagang Formation in the Y-Area of the Central Anticlinal Zone, Xihu Sag, East China Sea
by Xiao Ma, Wei Yan, Yi Yang, Ru Sun, Yue Chao, Guoqing Zhang, Chao Yang, Shudi Zhang, Dapeng Su, Guangxue Zhang and Hong Xu
J. Mar. Sci. Eng. 2025, 13(3), 520; https://doi.org/10.3390/jmse13030520 - 9 Mar 2025
Viewed by 707
Abstract
Recent breakthrough exploration wells in the Huagang Formation in the Y-area of the central anticlinal zone of the Xihu Sag have confirmed the significant exploration potential of structure–lithology complex hydrocarbon reservoirs. However, limited understanding of the provenance system, sedimentary facies, and microfacies has [...] Read more.
Recent breakthrough exploration wells in the Huagang Formation in the Y-area of the central anticlinal zone of the Xihu Sag have confirmed the significant exploration potential of structure–lithology complex hydrocarbon reservoirs. However, limited understanding of the provenance system, sedimentary facies, and microfacies has hindered further progress in complex hydrocarbon exploration. Analysis of high-precision stratigraphic sequences and seismic facies data, mudstone core color, grain-size probability cumulative curves, core facies, well logging facies, lithic type, the heavy-mineral ZTR index, and conglomerate combinations in drilling sands reveals characteristics of the source sink system and provenance direction. The Huagang Formation in the Y-area represents an overall continental fluvial delta sedimentary system that evolved from a braided river delta front deposit into a meandering river channel large-scale river deposit. The results indicate that the primary provenance of the Huagang Formation in the Y-area of the Xihu Sag is the long-axis provenance of the Hupi Reef bulge in the northeast, with supplementary input from the short-axis provenance of the western reef bulge. Geochemical analysis of wells F1, F3, and G in the study area suggests that the prevailing sedimentary environment during the period under investigation was characterized by anoxic conditions in nearshore shallow waters. This confirms previous research indicating strong tectonic reversal in the northeast and a small thickness of the central sand body unrelated to the flank slope provenance system. The aforementioned findings deviate from conventional understanding and will serve as a valuable point of reference for future breakthroughs in exploration. Full article
Show Figures

Figure 1

23 pages, 18305 KiB  
Article
Distribution Pattern and Controlling Factors of Reef–Shoal Reservoirs on Both Sides of the Intra-Platform Depression in the Changxing Formation, Wolonghe-Yangduxi Area, Sichuan Basin
by Yuhang Bi, Zhonggui Hu, Saijun Wu, Jiuzhen Hu, Weijie Tong and Min Yao
Appl. Sci. 2025, 15(4), 2128; https://doi.org/10.3390/app15042128 - 17 Feb 2025
Viewed by 572
Abstract
The development pattern of the high-quality reservoir in the Changxing Formation in the Wolonghe-Yangduxi area of southeastern Sichuan is complex. To clarify its evolution, genetic mechanisms, and distribution patterns, this study integrates data from profiles, cores, thin sections, and well logs. It reveals [...] Read more.
The development pattern of the high-quality reservoir in the Changxing Formation in the Wolonghe-Yangduxi area of southeastern Sichuan is complex. To clarify its evolution, genetic mechanisms, and distribution patterns, this study integrates data from profiles, cores, thin sections, and well logs. It reveals the distribution mechanisms of the bio-reef and shoal reservoirs in the Changxing Formation and discusses the controlling effects of tectonic, sedimentary, and diagenetic processes on reservoir development. The results show the following: (1) The Changxing Formation mainly develops open platform facies, platform margin facies, and slope-basin facies, which can be further subdivided into subfacies of platforms, intra-platform depressions, intra-platform depressions marginal reefs, and intra-platform depressions marginal shoals. The intra-platform margin reefs and the reefs at the edge of the platforms are favorable microfacies for reservoir development. (2) The high-quality reservoirs of the Changxing Formation are dominated by medium-thick-layered biogenic reef limestone and bioclastic limestone, with secondary porosity as the main reservoir space. (3) Sedimentary conditions, sea level fluctuations, and diagenesis are crucial factors for reservoir development. Paleogeomorphological conditions provide the foundation for reservoir development, while sea level fluctuations control the internal structure of the reef–shoal and the cyclical variations in the reservoir. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

18 pages, 3842 KiB  
Article
In the Face of Climate Change, Coral Reservoirs with Restoration Potential: A Case Study in Utría Cove, Eastern Tropical Pacific
by Maria Gabriela Quirama, Juan Felipe Lazarus and Mateo López-Victoria
Diversity 2025, 17(2), 124; https://doi.org/10.3390/d17020124 - 11 Feb 2025
Viewed by 1533
Abstract
The limited research in Utría Cove has hindered our understanding of marginal coral areas in a rapidly changing ocean. To better understand how marginal reefs could serve as coral reservoirs where local communities could actively be involved, we assessed the ecological attributes of [...] Read more.
The limited research in Utría Cove has hindered our understanding of marginal coral areas in a rapidly changing ocean. To better understand how marginal reefs could serve as coral reservoirs where local communities could actively be involved, we assessed the ecological attributes of Utría’s coral areas, documented the impact of the 2023–2024 El Niño event, and conducted a SWOT analysis to frame the restoration potential. The current state shows a reduction of 1.4 ha in La Chola reef, where the average live coral cover is 24% and algal cover is 41%. The other two coral communities assessed (Diego and Punta Diego) showed coral cover between 14% and 17%, and algal cover between 42% and 50%, respectively. No significant differences were found in structural complexity, benthic cover, and macroinvertebrates; only fish richness was significantly higher at Punta Diego. Based on previously documented higher coral cover, the three areas need interventions (i.e., active restoration), especially considering the widespread bleaching recorded (temperatures up to 31.4 °C; sustained mean temperatures of ~30 °C ± 0.43), associated with El Niño. The SWOT analysis identified four weaknesses (e.g., logistical challenges), four threats (e.g., illegal fishing), six strengths, and six opportunities that highlight the potential to engage locals in restoration by providing economic alternatives and boosting regional initiatives. Full article
(This article belongs to the Special Issue Biodiversity and Conservation of Coral Reefs)
Show Figures

Figure 1

28 pages, 25075 KiB  
Article
Photoelectric Factor Characterization of a Mixed Carbonate and Siliciclastic System Using Machine-Learning Methods: Pennsylvanian Canyon and Strawn Reef Systems, Midland Basin, West Texas
by Osareni C. Ogiesoba and Fritz C. Palacios
Geosciences 2025, 15(1), 3; https://doi.org/10.3390/geosciences15010003 - 26 Dec 2024
Viewed by 1507
Abstract
The photoelectric Factor (PEF) log is a powerful tool for distinguishing between siliciclastic and carbonate lithofacies in well-log analysis and 2D correlations. However, its application in complex reservoirs has some challenges due to well spacing. We present a workflow to extend its capabilities [...] Read more.
The photoelectric Factor (PEF) log is a powerful tool for distinguishing between siliciclastic and carbonate lithofacies in well-log analysis and 2D correlations. However, its application in complex reservoirs has some challenges due to well spacing. We present a workflow to extend its capabilities into a 3D environment to characterize the Pennsylvanian Strawn and Canyon reef complex in the Salt Creek field, Kent County, West Texas. The productive zones within this reservoir are composed of porous oolitic grainstones and skeletal packstones. However, there are some porous shale beds within the reef complex that are indistinguishable from the porous limestone zones on the neutron porosity log that have posed major challenges to hydrocarbon production. To address these problems, we used a machine-learning procedure involving multiattribute analysis and probabilistic neural network (PNN) to predict photoelectric factor (PEF) volume to characterize the reservoir and identify the shale beds. By combining neutron porosity, gamma ray, and the predicted PEF logs, we found that (1) these shale beds, hereby referred to as shale-influenced carbonates, are characterized by photoelectric factor values ranging from 4 to 4.26 B/E. (2) Based on the PEF values, the least porous interval is the Canyon System, having <1% porosity and characterized by PEF values of >4.78 B/E; while the most porous interval is the Strawn System, composed mostly of zones with porosity ranging from 3% to 28%, characterized by PEF values varying from 4.26 to 4.78 B/E. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

15 pages, 40313 KiB  
Article
Prediction of Thin Shoal Reservoirs Under Reef Controlled by Isochronous Stratigraphic Framework
by Shoucheng Xu, Xiuquan Hu, Zejin Shi, Chao Zhang, Jintao Mao and Boqiang Wang
J. Mar. Sci. Eng. 2024, 12(11), 1974; https://doi.org/10.3390/jmse12111974 - 2 Nov 2024
Viewed by 835
Abstract
Despite the great success in the global exploration and development of reef reservoirs, research on bioclastic shoals under reefs is still in its infancy. Bioclastic shoal reservoirs are very thin, with multiple vertical levels and fast lateral changes, which makes accurate prediction of [...] Read more.
Despite the great success in the global exploration and development of reef reservoirs, research on bioclastic shoals under reefs is still in its infancy. Bioclastic shoal reservoirs are very thin, with multiple vertical levels and fast lateral changes, which makes accurate prediction of the reservoir’s location much tougher. To further implement the reservoir distribution, under the guidance of sequence stratigraphy, the prediction of thin shoals under the control of an isochronous stratigraphic framework was established. Using the combination of spectrum shaping and F-X domain noise suppression techniques and utilizing the signal-to-noise ratio spectrum set as the reference, logging curve as supervision, and well seismic calibration and isochronal amplitude slicing as quality control, the seismic frequency band was extended, and the seismic data resolution and signal-to-noise ratio were improved. After frequency extension, the global optimal seismic automatic interpretation technique was used to construct an isochronal stratigraphic framework model. Through waveform facies-controlled inversion and waveform facies-controlled simulation techniques, the elastic properties of the shoal reservoir were obtained, from which the planar distribution of the reservoir was accurately predicted. The above methods were applied to the prediction of the bioclastic shoal reservoir in the lower submember of the Changxing formation in the Yuanba gas field (China). The plane distribution of bioclastic shoal in the first and second levels was identified, which provides a guideline for the prediction of thin shoal reservoirs. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

35 pages, 18094 KiB  
Article
Multi-Phase Dolomitization in the Jurassic Paleo-Oil Reservoir Zone, Qiangtang Basin (SW China): Implications for Reservoir Development
by Ruilin Hao, Liyin Pan, Nana Mu, Xi Li, Xiaodong Fu, Shaoyun Xiong, Siqi Liu, Jianfeng Zheng, Min She and Axel Munnecke
Minerals 2024, 14(9), 908; https://doi.org/10.3390/min14090908 - 5 Sep 2024
Viewed by 1096
Abstract
The age and dolomitization processes in the Paleo-oil reservoir zone, which is composed of massive dolostones found in the Qiangtang Basin (SW China), are still debated. In this research, the Long’eni-Geluguanna Area was selected. Macroscopic information, thin sections, and geochemical methods were used [...] Read more.
The age and dolomitization processes in the Paleo-oil reservoir zone, which is composed of massive dolostones found in the Qiangtang Basin (SW China), are still debated. In this research, the Long’eni-Geluguanna Area was selected. Macroscopic information, thin sections, and geochemical methods were used to investigate the dolomitization characteristics and the processes that controlled dolomitization. Five types of replacive dolomites and two types of dolomite cement were observed. Some of the dolomites displayed ghosts of primary sedimentary structures. Saddle dolomites were prevalent, occurring in the interparticle and moldic pores of the limestone which should have been filled at an early diagenetic stage. Ten microfacies types were identified. The foraminifera assemblage provides evidence that the studied interval is of Early Jurassic age. The δ13C values are similar to the contemporaneous seawater signature. The REE+Y patterns of limestones and dolostones exhibit similarities to that of seawater. The mean Na and Sr values are comparable to those of other near-normal seawater dolomites. The δ18O values of all lithologies are markedly depleted. The dolomitization started penecontemporaneously, with deposition. A general sand shoal setting with patch reefs developed. The dolomitizing fluids, near-normal seawater, was probably formed by slight evaporation on top of the shoal. Saddle dolomites in the interparticle and moldic pores might indicate hydrothermal activity, which also caused the recrystallization of some pre-existing dolomites. The recrystallization might have slightly increased the crystal size, demolished the ghost structures, formed saddle dolomites, and altered the REE+Y patterns. The recrystallization extent diminished with increasing distance from the fluids-providing fracture. Furthermore, the existence of protected areas within the sand shoal settings could enhance the vertical and horizontal heterogeneity of dolostone reservoirs. Full article
Show Figures

Figure 1

19 pages, 34675 KiB  
Article
The Volcanic Rocks and Hydrocarbon Accumulation in the Offshore Indus Basin, Pakistan
by Jing Sun, Jie Liang, Jianming Gong, Jing Liao, Qingfang Zhao and Chen Zhao
J. Mar. Sci. Eng. 2024, 12(8), 1375; https://doi.org/10.3390/jmse12081375 - 12 Aug 2024
Cited by 1 | Viewed by 1990
Abstract
To analyze the impact of volcanic rocks in the Offshore Indus Basin on hydrocarbon reservoir formation, seismic data interpretation, seismic data inversion, and sea–land correlation analysis were carried out. The results show that, longitudinally, volcanic rocks are mainly distributed at the top of [...] Read more.
To analyze the impact of volcanic rocks in the Offshore Indus Basin on hydrocarbon reservoir formation, seismic data interpretation, seismic data inversion, and sea–land correlation analysis were carried out. The results show that, longitudinally, volcanic rocks are mainly distributed at the top of the Cretaceous system or at the bottom of the Paleocene, and carbonate rock platforms or reefs of the Paleocene–Eocene are usually developed on them. On the plane, volcanic rocks are mainly distributed on the Saurashtra High in the southeastern part of the basin. In terms of thickness, the volcanic rocks revealed by drilling in Karachi nearshore are about 70 m thick. We conducted sparse spike inversion for acoustic impedance in the volcanic rock area. The results show that the thickness of the Deccan volcanic rocks in the study area is between 250 and 750 m which is thinning from southeast to northwest. Based on sea–land comparison and comprehensive research, the distribution of volcanic rocks in the Indian Fan Offshore Basin played a constructive role in the Mesozoic oil and gas accumulation in the Indus offshore. Therefore, in the Indian Fan Offshore Basin, attention should be paid to finding Mesozoic self-generated and self-stored hydrocarbon reservoirs and Cenozoic lower-generated and upper-stored hydrocarbon reservoirs. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

23 pages, 20878 KiB  
Article
Heterogeneous Reservoir Petrophysical Property and Controlling Factors in Semi-Restricted Depositional Setting: A Case Study of Yamama Formation, X Oilfield, Middle East
by Fengfeng Li, Lei Li, Haowei Chen, Wenyu Wang and Yang Wan
J. Mar. Sci. Eng. 2024, 12(6), 1011; https://doi.org/10.3390/jmse12061011 - 18 Jun 2024
Viewed by 1890
Abstract
The Early Cretaceous Yamama Formation of X oilfield, deposited in a semi-restricted setting, holds considerable oil reserves. However, the reservoir is extremely heterogeneous and is poorly studied. Integrating outcrops, cores, cast thin sections, regular or special core analysis, wireline logging data from six [...] Read more.
The Early Cretaceous Yamama Formation of X oilfield, deposited in a semi-restricted setting, holds considerable oil reserves. However, the reservoir is extremely heterogeneous and is poorly studied. Integrating outcrops, cores, cast thin sections, regular or special core analysis, wireline logging data from six wells, and seismic data, this study provides an improved understanding of reservoir petrophysical characteristics and geological controlling factors including sedimentation, diagenesis, and sequence. The results showed that eight lithologies are developed in the Yamama Formation, of which packstone and wackstone are dominant. The physical properties span a wide range, with porosity mainly distributed between 10% and 25%, and the permeability mainly distributed between 0.1 mD and 1 mD. Nine types of pores are developed, with moldic pores, micropores, and skeletal pores being the most developed. The reservoir has six types of microstructures, of which the poorly sorted with mega-throat represent the best reservoir. The Yamama Formation was mainly deposited in a lagoon, along with five other facies, such as supratidal flat, patchy reef, back shoal, shoal, and open shelf. Six types of diageneses are developed, with dissolution during the penecontemporaneous stage being the most beneficial to the reservoir and cementation being the most destructive. Three sequences were recognized in the Yamama Formation. It concluded that the hydrodynamics in semi-restricted depositional setting is weak overall and does not have the potential to develop large-scale high-quality reservoirs. A wide range of bioclasts were selectively dissolved to form a large number of secondary pores. Sediments rich in Algae, Bacinella, and peloids tend to form moldic pores, skeletal pores, and intergranular pores, respectively, which are prone to be favorable reservoirs. Controlled by the coupling of sedimentation and diagenesis driven by sequence, the reservoir is extremely heterogenous. Full article
(This article belongs to the Special Issue Exploration and Development of Marine Energy)
Show Figures

Figure 1

17 pages, 108657 KiB  
Article
Types and Evolution of the Miocene Reefs Based on Seismic Data in the Beikang Basin, South China Sea
by Zhen Yang, Guozhang Fan, Wei Yan, Xuefeng Wang, Guoqing Zhang, Zhili Yang, Zuofei Zhu, Yuanze Zhang, Huai Cheng, Hongxun Tian, Li Li and Qiang Zhang
J. Mar. Sci. Eng. 2024, 12(2), 360; https://doi.org/10.3390/jmse12020360 - 19 Feb 2024
Viewed by 1783
Abstract
During the Miocene, several reefs formed in the Beikang Basin, South China Sea, which may be potential targets for hydrocarbon exploration. This is due to the environment that developed as a result of the collision, splitting, and splicing of the Nansha Block, which [...] Read more.
During the Miocene, several reefs formed in the Beikang Basin, South China Sea, which may be potential targets for hydrocarbon exploration. This is due to the environment that developed as a result of the collision, splitting, and splicing of the Nansha Block, which was influenced by the Neogene expansion of the area. However, studies on the types, distribution, controlling factors, and evolution stages of these reefs are scarce. In this study, we used high-resolution seismic data and extensive well-drilling records to gain insights into the evolution of reefs in this particular area. Six distinct types of reefs, namely, the point reef, the platform-edge reef, the block reef, the bedded reef, the pinnacle reef, and the atoll reef, were identified based on our data. These reefs underwent four stages of development. During the initial stage, a few small-sized point reefs emerged in the basin and experienced significant growth during the early Middle Miocene. In the flourishing stage, the reefs predominantly thrived around the Central Uplift and Eastern Uplift areas. In the recession stage, the reefs began to deteriorate during the late Middle Miocene period as a result of the rapid increase in relative sea level caused by tectonic subsidence. In the submerged stage, since the Late Miocene, as the relative sea level continued to rise steadily over time, many reefs that had previously flourished surrounding the Central Uplift and Eastern Uplift areas became submerged underwater, with only a handful of atoll reefs surviving near islands located on the Eastern Uplift. This study indicated the presence of a significant number of well-preserved reefs in the Beikang Basin that have experienced minimal subsequent diagenesis and therefore exhibit high potential as reservoirs for oil and gas exploration. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

24 pages, 9820 KiB  
Article
Characteristics of Deepwater Oil and Gas Distribution along the Silk Road and Their Controlling Factors
by Jianqiang Wang, Jie Liang, Qingfang Zhao, Jianwen Chen, Jian Zhang, Yong Yuan, Yinguo Zhang and Heping Dong
Water 2024, 16(2), 240; https://doi.org/10.3390/w16020240 - 10 Jan 2024
Cited by 6 | Viewed by 2482
Abstract
Deepwater regions have emerged as pivotal domains for global oil and gas exploration and development, serving as strategic alternatives to conventional resources. The Silk Road region is distinguished by its abundant oil and gas reserves and stands as a leading arena for worldwide [...] Read more.
Deepwater regions have emerged as pivotal domains for global oil and gas exploration and development, serving as strategic alternatives to conventional resources. The Silk Road region is distinguished by its abundant oil and gas reserves and stands as a leading arena for worldwide exploration and development in the oil and gas sector. Since 2012, a series of atmospheric fields have been discovered in the deep sea of the Luwuma Basin and the Tanzania Basin, with cumulative recoverable reserves reaching 4.4 × 1012 and 8.3 × 1011 m3, including multiple oil and gas fields ranking among the top ten global discoveries at that time. Profound advancements have been achieved in the exploration of deepwater oil and gas reserves along the Silk Road. However, deepwater oil and gas exploration presents challenges, such as high development costs and risks, leading to certain areas remaining underexplored and exhibiting a relatively low level of exploration activity, thereby hinting at considerable untapped potential. Deepwater sedimentary basins along the Silk Road predominantly adhere to a distribution pattern characterized as “one horizontal and one vertical”. The “horizontal” dimension refers to the deepwater basin grouping within the Neo-Tethys tectonic domain, primarily extending from east to west. Conversely, the “vertical” dimension denotes the deepwater basin grouping along the East African continental margin, predominantly extending from north to south. Recent discoveries of deepwater oil and gas reserves validate the presence of foundational elements within Silk Road basins conducive to the formation of substantial oil and gas reservoirs and the establishment of efficient migration pathways. Despite these achievements, exploration activities in deepwater oil and gas resources along the Silk Road remain relatively limited. Future exploration endeavors in deepwater regions will predominantly focus on identifying structural and lithological traps. In the deepwater areas of the Bay of Bengal, the emphasis is on lithological traps formed by Neogene turbidite sandstone deposits. In the deepwater regions of Pakistan, the focus shifts to lithological traps emerging from Neogene bio-reefs and river-channel sandstone accumulations. Along the deepwater coastline of East Africa, the focus is on lithological traps formed by nearshore Mesozoic–Cenozoic bio-reefs and seafloor turbidite sandstone formations. Within the deepwater regions of Southeast Asia, the primary objective is to locate large structural-type oil and gas fields. Analyzing the characteristics of oil and gas discoveries in deepwater areas aims to enhance the theory of the control of the formation of deepwater oil and gas, providing valuable insights for predicting future exploration directions. Full article
(This article belongs to the Special Issue Advances in Marine Sedimentation and Geological Processes)
Show Figures

Figure 1

19 pages, 16082 KiB  
Article
High Permeability Streak Identification and Modelling Approach for Carbonate Reef Reservoir
by Dmitriy Shirinkin, Alexander Kochnev, Sergey Krivoshchekov, Ivan Putilov, Andrey Botalov, Nikita Kozyrev and Evgeny Ozhgibesov
Energies 2024, 17(1), 236; https://doi.org/10.3390/en17010236 - 2 Jan 2024
Cited by 5 | Viewed by 1552
Abstract
Reef reservoirs are characterised by a complex structure of void space, which is a combination of intergranular porosity, fractures, and vuggy voids distributed chaotically in the carbonate body in different proportions. This causes great uncertainty in the distribution of porosity and permeability properties [...] Read more.
Reef reservoirs are characterised by a complex structure of void space, which is a combination of intergranular porosity, fractures, and vuggy voids distributed chaotically in the carbonate body in different proportions. This causes great uncertainty in the distribution of porosity and permeability properties in the reservoir volume, making field development a complex and unpredictable process associated with many risks. High densities of carbonate secondary alterations can lead to the formation of zones with abnormally high porosity and permeability—high permeability streaks or super-reservoirs. Taking into account super-reservoirs in the bulk of the deposit is necessary in the dynamic modelling of complex-structure reservoirs because it affects the redistribution of filtration flows and is crucial for reservoir management. This paper proposes a method for identifying superreservoirs by identifying enormously high values of porosity and permeability from different-scale study results, followed by the combination and construction of probabilistic curves of superreservoirs. Based on the obtained curves, three probabilistic models of the existence of a superreservoir were identified: P10, P50, and P90, which were further distributed in the volume of the reservoir and on the basis of which new permeability arrays were calculated. Permeability arrays were simulated in a dynamic model of the Alpha field. The P50 probabilistic model showed the best history matching after one iteration. Full article
Show Figures

Figure 1

Back to TopTop